

Annex Y – ASAC FINAL REPORT

Note: This Annex appears in its original format.

NORTH ATLANTIC TREATY ORGANIZATION

AC/323()

www.STO.nato.int

STO TECHNICAL REPORT

NG-NRMM Simulation Model Development and Analysis of the FED-Alpha Vehicle – Final Project Report

Tamer M. Wasfy and Hatem M. WasfyAdvanced Science and Automation Corp.

NG-NRMM Simulation Model Development and Analysis of the FED-Alpha Vehicle – Final Project Report

Executive Summary

This report presents a summary of Advanced Science and Automation Corp.'s (ASA) results in the Next Generation NATO Reference Mobility Model (NG-NRMM) Cooperative Demonstration of Technology (CDT) project. The report describes the vehicle model, the soil model, and ASA simulation results for each CDT test event.

Keywords

Off-road and On-road Vehicle Mobility; Multibody Dynamics; Discrete Element Method; Computational Mechanics; Soft Soil; Terramechanics.

Table of Contents

EXECUTIVE SUMMARY	<u> </u>
1. VEHICLE MODEL	11
<u> </u>	
1.1. TIRE MODEL AND CALIBRATION	12
1.2. WEIGHT AND C.G. CALIBRATION	15
2. SOIL MODEL	17
1. DEM INTER-PARTICLE FORCE MODEL	17
2. SOIL MODEL CALIBRATION	20
2.2.1. HYDROSTATIC COMPRESSION	21
2.2.2. Shear Cell	22
2.2.3. CONE PENETROMETER	25
3. PHASE II SIMULATION EVENTS: MODEL COMPARISON TO LIVE TEST	28
1. EVENT 1: STRAIGHT-LINE ACCELERATION ON PAVEMENT	28
2. EVENT 2: WALL-TO-WALL TURN RADIUS	30
3. EVENT 3: STEADY-STATE CORNERING	32
4. EVENT 4: DOUBLE-LANE CHANGE ON PAVEMENT	33
5. EVENT 5: DOUBLE-LANE CHANGE ON GRAVEL	35
6. EVENT 6: SIDE-SLOPE WITH SINUSOIDAL STEER	36
7. EVENT 7: MAXIMUM LONGITUDINAL GRADE ON PAVEMENT	39
8. EVENT 8: MAXIMUM LONGITUDINAL GRADE ON SAND	40
9. EVENTS 9-12: HALF-ROUNDS 4-18 INCH	42
10. EVENT 13-14: VERTICAL STEPS	45
11. Event 15: V-ditch	45
12. EVENTS 16-18: DRAW-BAR PULL ON SOFT SOIL	46
13. EVENTS 20-22: ASYMMETRIC RMS 1 TO 3 INCH COURSES	48
14. EVENTS 27-31: SYMMETRIC RMS 1 TO 5 INCH COURSES	50
15. Event 32: Mobility traverse	54
16. GO-NOGO AND MOBILITY MAPS	66

4. CONCLUSIONS, GAPS, AND PATH FORWARD	70
APPENDIX A: FED-ALPHA MODEL SPREADSHEETS	72
REFERENCES	82

List of Figures and Tables

Figure 1: FED-Alpha suspension system sheet in DIS/GroundVehicle.	11
Figure 2; Snapshots of the FED-Alpha vehicle model	12
Figure 3: Single tire test rig model.	13
Figure 4: Tire vertical deflection versus normal load - comparison between the tire experiment data provide	ded
and the DIS single tire test rig model for 35, 40 and 65 psi.	13
Figure 5: Single tire test rig rolling resistance and longitudinal speed versus time.	14
Figure 6: Tire lateral force versus slip angle predicted using the single tire test rig model.	14
Figure 7: Tire self-aligning torque versus slip angle predicted using the single tire test rig model	15
Figure 8: Comparison between DIS model and test tire static forces	15
Figure 9: Time-history of DIS model tire forces.	16
Figure 10: Time-history of DIS model strut length.	16
Figure 11: Normal adhesion and repulsion contact forces.	17
Figure 12: Typical curve of plastic deformation as a function of repulsion force	18
Figure 13: Typical bulk density versus normal pressure curve for a cohesive soft soil - comparison of experim	ient
data obtained using a hydrostatic compression test and the DEM model.	18
Figure 14: Typical adhesion force as function of plastic deformation.	19
Figure 15: Overview of the DEM force model using in DIS.	20
Figure 16: Overview of the DEM soil model calibration procedure used in the CDT	20
Figure 17: Uniaxial compression test results for Coarse and fine grain soil: Bulk density versus hydrosta	atic
pressure	21
Figure 18: Uniaxial compression cell.	22
Figure 19: Shear cell test results for 5 given soil types: shear stress versus horizontal displacement under z	ero
normal load after the soil sample being consolidated with a 148 kPa normal load for 60 sec in the sh	iear
cell	23
Figure 20: Shear cell model	24
Figure 21: Shear cell DIS model simulation results: shear stress versus horizontal displacement under z	ero
normal load after the soil sample being consolidated with a 150 kPa normal load in the virtual shear c	ell.
The DEM soil parameters are $C = 0.5$ and internal friction angle of 11.3°	25
Figure 22: Shear cell DIS model results: Soil shear strength versus the cohesion factor	25
Figure 23: Cone penetrometer model and simulation.	26
Figure 24: Cone penetrometer DIS model results: Cone index versus the DEM model cohesion factor a	and
internal friction angle.	27
Figure 25: Comparison of DIS model and test: Straight-line acceleration on pavement: vehicle speed ver	sus
time	28
Figure 26: Comparison of DIS model and test: Straight-line acceleration on pavement: Engine torque (%	5 of
max) versus time.	29
Figure 27: Comparison of DIS model and test: Straight-line acceleration on pavement: Engine RPM versus til	me.
	29
Figure 28: Comparison of DIS model and test: Straight-line acceleration on pavement: Gear number ver	sus
time	.30

Figure 29: Wall-to-wall turn radius simulation time-histories of pitman arm, inner (left) wheel, and outer (right)
wheel angles. The test pitman arm angle is also shown for comparison
Figure 30: Wall-to-wall turn radius trace of front left, front right, back left, and back right
Figure 31: Snapshot of the wall-to-wall simulation
Figure 32: Snapshot of the 30 m cornering simulation
Figure 33: Comparison between test and simulation: 30 m cornering: Time-histories of roll angle, vehicle speed,
Pitman arm angle and lateral acceleration
Figure 34: Comparison between test and simulation: double-lane change at 30 mph: Time-histories of pitman
arm angle, lateral acceleration, and roll angle. Also, the positions of the vehicle 4 corners are plotted34
Figure 35: Snapshots of the double-lane change maneuver on pavement at 49 mph
Figure 36: Snapshots of the double-lane change maneuver on gravel at 43 mph
Figure 37: X-Y path of the vehicle's center for the vehicle in low gear setting mode with the axles and center
differentials locked while performing the side slope obstacle avoidance maneuver
Figure 38: Snapshots of the vehicle simulation at 6 mph in low gear setting with the axles and center differentials
locked while performing the side slope obstacle avoidance maneuver
Figure 39: X-Y path of the vehicle's center for the vehicle in high gear setting mode with the axles and center
differentials open while performing the side slope obstacle avoidance maneuver
Figure 40: Snapshots of the vehicle simulation at 7 mph in high gear setting with the axles and center
differentials open while performing the side slope obstacle avoidance maneuver
Figure 41: Maximum vehicle speed versus grade on pavement in the high and low transfer case gear ranges. 39
Figure 42: Snapshots of the FED vehicle going over the variable 2NS sand slope40
Figure 43: Vehicle slope as a function of time during the sand grade climb. The maximum slope reached is
about 23%
Figure 44: Comparison between test and simulation: 10" half-round at speed from 5 to 17 mph: Time-histories
of vertical acceleration at the driven seat
Figure 45: Driver seats base vertical acceleration versus vehicle speeds predicted using DIS for the vehicle
going at increasing speeds over the 4", 8", 10", and 12" half-round bumps
Figure 46: Driver/passenger seats vertical acceleration vehicle speeds predicted using DIS model simulation
results and the KRC experiments for the vehicle going at increasing speeds over the 4", 8", 10", and 12"
half-round bumps44
Figure 47: Snapshots of the vehicle going over 18" vertical step
Figure 48: Snapshots of the vehicle going over the KRC V-ditch
Figure 49: Snapshot during of the drawbar pull simulation on FGS-Dry
Figure 50: Test (inertia corrected) drawbar pull coefficient versus wheel slip results (top) and DIS model results
(bottom) for FGS-Dry47
Figure 51: Test (inertia corrected) drawbar pull coefficient versus wheel slip results (top) and DIS model results
(bottom) for CGS-Dry
Figure 52: Test (inertia corrected) drawbar pull coefficient versus wheel slip results (top) and DIS model results
(bottom) for FGS-Wet
Figure 53: Snapshots from the vehicle simulation over the $1.0^{\circ} - 1.5^{\circ}$ asymmetric RMS test course
Figure 54: Comparison between absorbed vibration power versus vehicle speed for the $1.0^{\circ} - 1.5^{\circ}$ asymmetric
RMS test course
Figure 55: Comparison between absorbed vibration power versus vehicle speed for the $1.5^{\circ} - 2.0^{\circ}$ asymmetric
RMS test course

Figure 56: DIS model vibration power versus vehicle speed for the $1.0^{\circ} - 1.5^{\circ}$ and $1.5^{\circ} - 2.0^{\circ}$ and asymmetric RMS test courses
Figure 57: Comparison between test and DIS model for the 6W absorbed vibration power speed versus RMS
amplitude for the asymmetric RMS test courses
Figure 58: Comparison between DIS model and test for the 1.0° symmetric RMS course: Absorbed vibration
power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.
Eisure 50: Commention between DIS model and test for the 1.5" summative DMS courses. Absorbed withoution
Figure 59. Comparison between DIS model and test for the 1.5 symmetric Rivis course. Absorbed vibration
power at the driver seat base versus venicle speed. The solid black line is the DTS model simulation results.
Figure 60: Comparison between DIS model and test for the 2.0" symmetric RMS course: Absorbed vibration
nower at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.
power at the arriver sear case versus vertice speed. The solid chack line is the Dis model simulation results.
Figure 61: Comparison between DIS model and test for the 3.0" symmetric RMS course: Absorbed vibration
power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.
Figure 62: Comparison between DIS model and test for the 4.0" symmetric RMS course: Absorbed vibration
power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.
Figure 63: DIS model absorbed vibration power at the driver seat base versus vehicle speed for the 1.0", 1.5",
2.0", 3.0", and 4.0" symmetric RMS courses
Figure 64: KRC test absorbed vibration power at the driver seat base versus vehicle speed for the 1.0", 1.5",
2.0", 3.0", and 4.0" symmetric RMS courses
Figure 65: Comparison between test and DIS model for the 6W absorbed vibration power speed versus RMS
amplitude for the symmetric RMS test courses
Figure 66: Segment of an ordered i-j quadrilateral terrain
Figure 67: Moving DEM complex topography terrain patch modeled using an <i>i-j</i> ordered quadrilateral grid
representing the terrain's surface, an emitter surface, a leveling surface, and a sink surface
Figure 68: Snapshots of the moving DEM complex topography terrain patch in typical vehicle mobility
simulations: 90° turn (left) and going down a slope (right) on rough soft soil terrains
Figure 09. Traverse triangular network (TIN) surface
Figure 70. Conversion of the traverse simulations using the complex tone graphy maying terrain patch technique
rigure / 1. Snapshots of test traverse simulations using the complex topography moving terrain patch technique.
Figure 72: Snanshots of the variable sand grade simulation using the complex topography moving soil natch
technique 59
Figure 73: Steering naths for the 14 traverse segments 59
Figure 74: Snapshots of the FED vehicle crossing the Y5 (Sinusoidal thru Coarse Grain Soil Pit) segment 60
Figure 75: Vehicle speed for the Y5 (Sinusoidal thru Coarse Grain Soil Pit) traverse segment: Comparison
between test and DIS model results
Figure 76: Snapshots of the FED vehicle crossing the Y7 (90° turn in Fine Grain Wet Soil Pit) segment61
Figure 77: Vehicle speed for the Y7 (90° turn in Fine Grain Wet Soil Pit) traverse segment: Comparison between
test and DIS model results
Figure 78: Snapshots of the FED vehicle crossing the B2 (Down Sand Grade with short length of gravel pad)
segment

Figure 79: Vehicle speed for the B2 (Down Sand Grade with short length of gravel pad) traverse segment:
Comparison between test and DIS model results
Figure 80: Vehicle speed for the Y1 (Transition to Panic Stop - Secondary Road, Sinusoidal of Packed Trail,
and Packed Trail) traverse segment: Comparison between test and DIS model results
Figure 81: Vehicle speed for the Y2 (Transition from Max Acceleration - Secondary Road & Packed Trail)
traverse segment: Comparison between test and DIS model results
Figure 82: Vehicle speed for the Y3 (Wadi) traverse segment: Comparison between test and DIS model results.
Figure 83: Vehicle speed for the Y4 (Transition - Packed Trail) traverse segment: Comparison between test and
DIS model results
Figure 84: Vehicle speed for the Y6 (Transition - Secondary Road and Packed Trail) traverse segment:
Comparison between test and DIS model results
Figure 85: Vehicle speed for the Y8 (Side Slope & RMS 2.0) traverse segment: Comparison between test and
DIS model results
Figure 86: Deterministic go-nogo map
Figure 87: Deterministic speed-made-good mobility map
Figure 88: Non-deterministic go-nogo UQ maps
Figure 89: Non-deterministic speed-made-good mobility UQ maps
Figure 90: Coupled vegetation - vehicle simulation. Vegetation blades are modeled using thin beam elements.
Figure 91 combined vegetation beam element model with the soft soil DEM model71

Table 1: Shear cell test results for 5 given soil types: Maximum shear soil strength for the shear cell re	sults in
Figure 19	24
Table 2: Dimensions of the physical shear cell and the virtual shear cell in Figure 20.	24
Table 3: Shear cell test results for 5 given soil types: Maximum shear soil strength for the shear cell re	sults in
Figure 19	25
Table 4: Parameters of the cone penetrometer model.	26
Table 5: Average insitu cone index for the given 6 soil types at 2", 4" and 6" depths along with the we	eighted
average cone index through the effective depth of the soil for the vehicle.	26
Table 6: DEM cone index and corresponding cohesion factor (Table 3) and friction angle (Figure 24)	27
Table 7: Summary of 2.5 g driver/passenger seats vertical acceleration vehicle speeds predicted using DIS	S model
simulation results and the KRC experiments for the vehicle going at increasing speeds over the 4", 8	8", 10",
and 12" half-round bumps.	44
Table 8: Speed-made-good results of mobility map DOE set #1.	67

1. VEHICLE MODEL

The FED-Alpha vehicle model was created using DIS/GroundVehicle. The main sub-tasks included:

- Cleaning up the CAD model for use in visualization of the vehicle.
- Extracting the hard-points of the suspension system, steering system, and drive-line from the CAD model.
- Entering the parameters for the various vehicle systems, such as the vehicle frame, suspension system (Figure 1), steering system, drive-line, and tires in the corresponding DIS/GroundVehicle sheets based on the data provided by Ricardo.

The vehicle model consists of 50 rigid bodies including: frame, suspension control arms, knuckles, wheels, shafts and axles. The bodies are connected using spherical, revolute, prismatic, and CV joints. Rotary actuators are used for the engine, brakes, and steering column. Snapshots of the FED-Alpha vehicle model are shown in Figure 2. The main DIS/GroundVehicle spreadsheets which are used to define the FED-Alpha vehicle model are given in Appendix A.

Figure 1: FED-Alpha suspension system sheet in DIS/GroundVehicle.

Figure 2; Snapshots of the FED-Alpha vehicle model

1.1. TIRE MODEL AND CALIBRATION

The tire model was calibrated using a test rig for a single tire (Figure 3). The following tire response quantities were calibrated:

- Tire vertical deflection versus normal load for 3 different tire pressures 35, 40 and 60 psi (Figure 4)
- Tire rolling resistance versus speed for a tire normal load of 17,169 N (Figure 5) and tire inflation pressure of 60 psi. At low speeds the tire rolling resistance coefficient is 0.0125 and at 20 m/s (45 mph) the tire rolling resistance coefficient is 0.023.
- Tire lateral force versus slip angle (using the provided Pacjeka 2002 tire data) (Figure 6).
- Tire self-aligning torque versus slip angle (using the provided Pacjeka 2002 tire data) (Figure 7).

Figure 3: Single tire test rig model.

Figure 4: Tire vertical deflection versus normal load - comparison between the tire experiment data provided and the DIS single tire test rig model for 35, 40 and 65 psi.

Figure 5: Single tire test rig rolling resistance and longitudinal speed versus time.

Figure 6: Tire lateral force versus slip angle predicted using the single tire test rig model.

Figure 7: Tire self-aligning torque versus slip angle predicted using the single tire test rig model.

1.2. WEIGHT AND C.G. CALIBRATION

The vehicle is set on ground until it reaches steady-state static equilibrium. Then, the static tire forces and struts lengths are plotted in Figure 9 and Figure 10.

DIS Model				Test			
	Left	Right	Total		Left	Right	Total
Front Tire Force (Ib)	3136.1	3136.1	6272.1	Front Tire Force (Ib)	3125.0	3135.0	6260.0
Rear Tire Force (Ib)	2918.9	2918.9	5837.7	Rear Tire Force (lb)	2965.0	2860.0	5825.0
Total	6054.9	6054.9	12109.9	Total	6090.0	5995.0	12085.0
	Diffe	ence (%)					

Difference (70)			
	Left	Right	Total
Front Tire Force	0.4	0.0	0.2
Rear Tire Force	-1.6	2.1	0.5
Total	-0.6	1.0	

Figure 8: Comparison between DIS model and test tire static forces.

2. SOIL MODEL

1. **DEM INTER-PARTICLE FORCE MODEL**

In this section, the DEM inter-particle force model, presented in in Refs. [1-3], which is used in the DIS software is briefly outlined. The tangential inter-particle force $|F_t|$ is calculated using:

$$|F_t| = F_{viscous} + F_{friction} \tag{2.1}$$

The viscous force $F_{viscous}$ is given by:

$$F_{viscous} = c_t [v_t] \tag{2.2}$$

where:

$$|v_t| = \sqrt{v_{t1}^2 + v_{t2}^2 + v_{t3}^2}$$
(2.3)

 c_t is the viscosity coefficient and $|v_t|$ is the signed tangential velocity magnitude. The friction force ($F_{friction}$) is calculated using the asperity-based approximate Coulomb friction force model presented in [4]. The normal inter-particle force $|F_n|$ is calculated using:

$$|F_n| = F_{adhesion} + F_{repulsion} + F_{damping}$$
(2.4)

 $F_{adhesion}$ and $F_{repulsion}$ are both specified as a function of contact point penetration into the contact surface d (Figure 11). Up to a penetration distance d_0 the contact forces are attractive thus joining the two bodies/particles together. A force greater than $F_{adhesion,max}$ is needed in order to separate the two bodies. If the penetration exceeds d_0 then the contact force becomes repulsive thus opposing further penetration. The actual shape of the curve in Figure 11 can be tuned using experimental shear cell and hydrostatic compression data.

Figure 11: Normal adhesion and repulsion contact forces.

The normal damping force $(F_{damping})$ is given by:

$$F_{damping} = \begin{cases} c_n \dot{d} & \dot{d} \ge 0\\ s_n c_n \dot{d} & \dot{d} < 0 \end{cases}$$
(2.5)

where c_n is the penalty damping coefficient and s_n is a separation damping factor (typically between 0 and 1) which reduces normal damping when the two bodies are moving apart. In order to model the permanent plastic deformation of the soil, plastic deformation ($\delta_{plastic}$) can be specified as a function of repulsion (compression) force ($F_{repulsion}$) (e.g. Figure 12). The plastic deformation is subtracted from the particle radius. The $\delta_{plastic}$ versus $F_{repulsion}$ curve can be tuned to match the bulk density versus consolidating pressure curve for the soil (e.g. Figure 13) obtained using a hydrostatic compression test.

Figure 12: Typical curve of plastic deformation as a function of repulsion force.

Figure 13: Typical bulk density versus normal pressure curve for a cohesive soft soil - comparison of experiment data obtained using a hydrostatic compression test and the DEM model.

In order to account for the increase in soil cohesive strength after consolidation, the maximum adhesion force $(F_{adhesion,max})$ in Figure 11 can be specified as function of the plastic deformation (e.g. Figure 14). Also, the friction coefficient (μ) , viscosity coefficient (c_n) and damping coefficient (c_t) can be specified as a function of

the plastic deformation ($\delta_{plastic}$). The curve in Figure 14 along with the friction coefficient can be tuned to match the shear stress versus normal stress for different pre-shear normal stress values obtained using a shear test or a tri-axial test.

In order to account for the reduction of soil cohesive strength and soil bulk density due to shear/tension and/or removal of the compression, a time relaxation is applied to the soil plastic deformation each time step such that the plastic deformation of a particle ($\delta_{plastic}$) is given by:

$$\delta_{plastic} = \delta_{plastic} - \begin{cases} 0 & - & F_{repulsion,max} \ge F_{adhesion,max} \\ V_{relax}\Delta t & F_{repulsion,max} < F_{adhesion,max} \end{cases}$$
(2.6)

where V_{relax} is the speed of plastic relaxation (in distance/time) and Δt is the explicit solution time step. If the particle maximum repulsion (compression) force is larger than the maximum adhesion (tension) force then the particle plastic deformation is left unchanged. If the particle maximum repulsion force is smaller than the maximum adhesion force then the particle plastic deformation is reduced at a speed of V_{relax} . The plastic deformation smallest allowable value is zero. The value of V_{relax} must be experimentally tuned.

In summary, the DEM force model used in DIS (Figure 15) includes the following soil mechanics effects:

- Change in bulk density/plastic strain as a function of normal stress.
- Change in cohesion as a function of bulk density/ plastic strain.
- Internal soil friction.
- Internal soil viscosity.
- Soil damping.
- Soil dilatency (increase in bulk density/plastic strain after shear type loading).
- Elasticity (normal elastic strain versus normal stress).
- DEM particle shape including spherical, cubical, and polyhedral.
- Adhesive stress between vehicle surface and soil as a function of bulk density/ plastic strain.
- Friction coefficient

Figure 15: Overview of the DEM force model using in DIS.

2. SOIL MODEL CALIBRATION

The DEM model can be calibrated using terramechanics tests such as: hydrostatic compression, shear cell, triaxial cell, bevameter, penetroplate, and cone penetrometer. For the CDT, the following 3 step procedure (Figure 16) was used to calibrate the DEM soil model.

Figure 16: Overview of the DEM soil model calibration procedure used in the CDT.

2.2.1. Hydrostatic compression

The hydrostatic uniaxial compression test is used to measure the soil bulk density versus hydrostatic pressure. This data is then used to tune the DEM particles plastic strain versus compression stress.

Figure 17: Uniaxial compression test results for Coarse and fine grain soil: Bulk density versus hydrostatic pressure.

Figure 18: Uniaxial compression cell.

2.2.2. Shear cell

The shear strength of soil under zero normal load is the cohesive shear strength of the soil. The shear cell is used to measure the cohesive shear strength of a pre-consolidated soil sample. First, the soil sample is consolidated with a normal stress of 150 kPa for 60 sec. Note that this normal stress is close to the normal stress of the tire on the soil. The total vehicle weight per tire is 13,500 N. The tire contact patch area is about 0.0625 $m^2 (0.25 \text{ m} \times 0.25 \text{ m})$. Accordingly, the average tire ground pressure is 216 kPa. The normal stress on the soil sample is then removed. Next the soil sample is sheared under zero normal load and we plot the shear stress versus the shear displacement (Figure 19). The maximum shear stress during the soil sample shearing process is then extracted from the graph (see Table 1). This maximum shear stress is a measure of the cohesive strength of the soil.

The shear cell is modeled using the DIS software. The shear cell test and model dimensions are given in Table 2. Note that the virtual shear cell dimensions are about 16 times larger the physical shear cell. This is due to the fact that the DEM particle diameter is 0.03 m. Thus, if the physical cell dimensions are used then the cell will only contain 4 particles. Since the soil strength characteristics are in terms of stress, we can scale up the cell as long as the same normal and shear stress values are used.

Similar to the experiment, in the virtual DIS shear cell, the soil sample is first consolidated using a normal load of 150 kPa. Then, the normal load is removed, then the soil sample is sheared under zero normal load. Figure 21 shows a typical shear stress versus horizontal displacement curve from the virtual shear cell. The maximum shear stress value is extracted from the curve. This value represents the cohesive strength of the DEM soil. In Figure 22 the DEM soil strength is plotted versus the DEM soil cohesion factor (C). From the curve in Figure 22, we can calculate the cohesion factor for the 5 soil types in Table 2.

Figure 19: Shear cell test results for 5 given soil types: shear stress versus horizontal displacement under zero normal load after the soil sample being consolidated with a 148 kPa normal load for 60 sec in the shear cell.

Table 1: Shear cell test results for 5 given soil types: Maximum shear soil strength for the shear cell results inFigure 19.

Soil Type	Shear Strength (kPa)
2NS - Dry (1.2% mc)	3.38
Coarse Grain Soil – Dry (3.4% mc)	4.15
Fine Grain Soil – Wet (16.9% mc)	3.38
Rink Natural – Wet (15.4% mc)	5.56
Stability – Wet (18.6% mc)	4.49

Figure 20: Shear cell model.

Table 2: Dimensions	of the physical	shear cell and	I the virtual	shear cell in	Figure 20.

	Physical Cell	Virtual Cell
Diameter (D)	0.0635 m	1.0 m
Bottom height (h_1)	0.0127 m	0.3 m
Top height (h_2)	~ 0.0127 m	0.3 m

Figure 21: Shear cell DIS model simulation results: shear stress versus horizontal displacement under zero normal load after the soil sample being consolidated with a 150 kPa normal load in the virtual shear cell. The DEM soil parameters are C = 0.5 and internal friction angle of 11.3°

Figure 22: Shear cell DIS model results: Soil shear strength versus the cohesion factor.

Table 3: Shear cell test results for 5 given soil types: Maximum shear soil strength for the shear cell results inFigure 19.

Soil Type	Shear Strength (kPa)	DEM Cohesion factor (<i>C</i>)
2NS - Dry (1.2% mc)	3.38	0.388
Coarse Grain Soil – Dry (3.4% mc)	4.15	0.484
Fine Grain Soil – Wet (16.9% mc)	3.38	0.388
Rink Natural – Wet (15.4% mc)	5.56	0.666
Stability – Wet (18.6% mc)	4.49	0.529

2.2.3. Cone penetrometer

The Cone Index (CI) combines friction and cohesion. Since we know cohesion from the shear cell test in Section 2.2.2, we can use CI to get friction. Thus, after tuning the cohesive strength of the DEM soil using the shear cell, the cone penetrometer test is used to tune the friction angle of the DEM soil. Snapshots of the cone

penetrometer model and simulation are shown in Figure 23. The parameters of the cone penetrometer model are shown in Table 4.

Figure 23: Cone penetrometer model and simulation.

Cylindrical container diameter	1.3 m	
Consolidating lid pressure	600 kPa	
Cone penetrometer base diameter	0.375 m	
Cone penetrometer length	0.7 m	
Cone penetrometer cone angle	30°	
Penetrometer speed	0.07 m/s	

Table 4: Parameters of the cone penetrometer model

Table 5 shows the cone index for the six types of KRC soils tested at 2", 4" and 6" depths. An average cone index across the height is calculated and shown in the table. The average is weighed towards the 2" depth values from strong soils (CI > 60) since the tire penetration is expected to be small for those soils. While for weak soils (CI < 60) the average cone index is weighed towards the 6" depth values since the tire is expected to penetrate deeper in the soil.

Table 5: Average insitu cone index for the given 6 soil types at 2", 4" and 6" depths along with the weighted
average cone index through the effective depth of the soil for the vehicle.

Soil Type	Average Cone	Average Cone	Average Cone	Weighted Averaged
	Index (2")	Index (4")	Index (6")	Cone Index
2NS – Dry	29.0	69.7	116.3	50.3 psi
Coarse Grain Soil – Dry	26.1	73.6	125.3	50.1 psi
Fine Grain Soil – Dry	56.3	145	284.3	85.0 psi
Fine Grain Soil – Wet	5.5	5.5	32.0	21.4 psi
Rink Natural – Wet	152.3	261.3	261.3	165.8 psi
Stability – Wet	139.4	249.4	249.4	150.1 psi

Figure 24 shows the results of the cone penetrometer simulations of the cone index versus the DEM model interparticle cohesion factor and internal friction angle.

Figure 24: Cone penetrometer DIS model results: Cone index versus the DEM model cohesion factor and internal friction angle.

The cohesion factor in Table 3 along with the cone index test average values in Table 5 and the cone index versus DEM cohesion factor and friction angle in Figure 24 are used to tune the DEM friction angle for the 4 types of soils that will be used in the drawbar pull and sand slope tests. The final DEM tuned values for those soils are shown in Table 6.

Soil Type	Cone Index	DEM Cohesion Factor	DEM Friction angle
2NS – Dry	50.3 psi	0.388	21.8°
Coarse Grain Soil – Dry	50.1 psi	0.484	21.7°
Fine Grain Soil – Dry	85.0 psi	0.388 (estimated)	38°
Fine Grain Soil – Wet	21.4 psi	0.388	11.3°

Table 6: DEM cone index and corresponding cohesion factor (Table 3) and friction angle (Figure 24).

Notes:

The shear cell, tri-axial, and bevameter tests with the soil under a normal load result in soil internal friction angle which is much higher than the soil friction angle predicted using the cone penetrometer or the drawbar pull tests. Possible reasons why the friction angle from the lab shear and tri-axial, and insitu bevameter tests are higher than the friction angle from the cone index are:

- The confined soil response (inside a shear or tri-axial cell) or semi-confined response in a Bevameter is different than the unconfined response with a cone or a tire.
- The insitu soil is loose, so it's internal friction/cone index is low and lab soil gets compacted so its internal friction is high. So this means that the soil friction coefficient maybe a function of the compaction (plastic deformation of the soil).
- Under dynamic unconfined loading of a tire or cone some soils is more flowable so that the effective friction is low.

This issue needs further investigation.

3. PHASE II SIMULATION EVENTS: MODEL COMPARISON TO LIVE TEST

In Phase I all most of the simulations performed in Phase II (with the exception of the mobility traverse simulations) were performed using the model based on the supplied vehicle parameters in addition to assumptions that we made for missing data (which mainly included tire normal damping, tire rolling resistance, and driveline losses for each driveline component). In Phase II the missing data values were tuned based on the straight-line acceleration, 10" half-round results, and 4" symmetric RMS results which were supplied by TARDEC in order to tune the vehicle model. In this Chapter we present the Phase II results of the final tuned vehicle/soil models.

1. EVENT 1: STRAIGHT-LINE ACCELERATION ON PAVEMENT

The FED vehicle is accelerated from time 5 s to time 60 s at the maximum possible acceleration on level pavement terrain. The results of the comparison between the test and the DIS model are shown in Figure 25 to Figure 28.

Figure 25: Comparison of DIS model and test: Straight-line acceleration on pavement: vehicle speed versus time.

Figure 26: Comparison of DIS model and test: Straight-line acceleration on pavement: Engine torque (% of max) versus time.

Figure 27: Comparison of DIS model and test: Straight-line acceleration on pavement: Engine RPM versus time.

Figure 28: Comparison of DIS model and test: Straight-line acceleration on pavement: Gear number versus time.

2. EVENT 2: WALL-TO-WALL TURN RADIUS

The vehicle pitman arm is moved to the maximum CW steering angle. Then the vehicle is linearly accelerated until a constant speed of 2 m/s is reached. The simulation is repeated in the CCW direction. The results are shown below:

- Test
 - \circ CW radius = 51.1 ft, Pitman Arm Angle = 27.9°
 - \circ CCW radius = 50.8 ft
- DIS model
 - CW radius = 50.41 ft (Difference from test =1.35%), Pitman Arm angle = 28.0° (Difference from test = 0.36%)
 - CCW radius = 50.42 ft (Difference from test =0.76%), Pitman Arm angle = -28.0° (Difference from test = -0.36%)

Figure 29: Wall-to-wall turn radius simulation time-histories of pitman arm, inner (left) wheel, and outer (right) wheel angles. The test pitman arm angle is also shown for comparison.

Figure 30: Wall-to-wall turn radius trace of front left, front right, back left, and back right.

Figure 31: Snapshot of the wall-to-wall simulation.

3. EVENT 3: STEADY-STATE CORNERING

The vehicle is accelerated until a speed of 25 mph is reached while going on a 30 m radius circle on pavement (COF = 0.8). The DIS model and test results are compared in Figure 33

Figure 32: Snapshot of the 30 m cornering simulation.

Figure 33: Comparison between test and simulation: 30 m cornering: Time-histories of roll angle, vehicle speed, Pitman arm angle and lateral acceleration.

4. EVENT 4: DOUBLE-LANE CHANGE ON PAVEMENT

The vehicle is accelerated to the constant final speed of 30 mph on pavement (COF = 0.8). Then the vehicle performs the NATO AVTP03-160W double-lane change maneuver. A comparison between the DIS model and the test is shown in Figure 34.

Figure 34: Comparison between test and simulation: double-lane change at 30 mph: Time-histories of pitman arm angle, lateral acceleration, and roll angle. Also, the positions of the vehicle 4 corners are plotted.

DIS simulations were then run for the NATO AVTP03-160W double-lane change maneuver on pavement (COF = 0.8) with vehicle speeds in the range from 20 to 53 mph. At 50 mph, the vehicle goes outside the NATO AVTP03-160W double-lane change limits. Thus **the maximum double-lane change vehicle speed on pavement is 49 mph**. Snapshots from the double-lane change simulation at 49 mph are shown in Figure 35. The following simulation data of the vehicle in the NATO format was uploaded to the CDT ftp site:

- Paved, double-lane change at 20 mph Left turn first: PavedLaneChange_20mphLTF.csv
- Paved, double-lane change at 30 mph Left turn first: PavedLaneChange_30mphLTF.csv
- Paved, double-lane change at 40 mph Left turn first: PavedLaneChange 40mphLTF.csv
- Paved, double-lane change at 46 mph Left turn first: PavedLaneChange 46mphLTF.csv
- Paved, double-lane change at 49 mph Left turn first: PavedLaneChange 49mphLTF.csv
- Paved, double-lane change at 50 mph Left turn first: PavedLaneChange 50mphLTF.csv
- Paved, double-lane change at 51 mph Left turn first: PavedLaneChange 51mphLTF.csv
- Paved, double-lane change at 52 mph Left turn first: PavedLaneChange 52mphLTF.csv
- Paved, double-lane change at 53 mph Left turn first: PavedLaneChange 53mphLTF.csv
- Paved, double-lane change at 49 mph Right turn first: PavedLaneChange 49mphRTF.csv

Figure 35: Snapshots of the double-lane change maneuver on pavement at 49 mph.

5. EVENT 5: DOUBLE-LANE CHANGE ON GRAVEL

DIS simulations were run for the NATO AVTP03-160W double-lane change maneuver on gravel (COF = 0.5) with vehicle speeds from 20 to 44 mph (Figure 36). At 44 mph, the vehicle goes outside the NATO AVTP03-160W double-lane change limits. Thus **the maximum double-lane change vehicle speed on gravel is 43 mph**. The following simulation data in the NATO format was uploaded to the CDT ftp site:

- Gravel, double-lane change at 20 mph Left turn first: GravelLaneChange 20mphLTF.csv
- Gravel, double-lane change at 30 mph Left turn first: GravelLaneChange_30mphLTF.csv
- Gravel, double-lane change at 40 mph Left turn first: GravelLaneChange 40mphLTF.csv
- Gravel, double-lane change at 42 mph Left turn first: GravelLaneChange 42mphLTF.csv
- Gravel, double-lane change at 43 mph Left turn first: GravelLaneChange 43mphLTF.csv
- Gravel, double-lane change at 44 mph Left turn first: GravelLaneChange 44mphLTF.csv
- Gravel, double-lane change at 43 mph Right turn first: GravelLaneChange 43mphRTF.csv

Figure 36: Snapshots of the double-lane change maneuver on gravel at 43 mph.

6. EVENT 6: SIDE-SLOPE WITH SINUSOIDAL STEER

Simulations are carried out on a gravel (COF = 0.5) 30% side slope. The vehicle is accelerated until a constant desired speed (5, 6, 7, 8, and 9 mph) is reached. The X versus Y coordinate of the center of the vehicle is plotted. The vehicle is required to maneuver around a 3 m obstacle in less than 30 m. Since the width of the vehicle is 2.288 m. Therefore, the Y coordinate of the center of the vehicle must maneuver around a virtual obstacle hat has a width given by:

$(3 + 2.288/2) \cos(16.7^\circ) = 3.97 \text{ m}$

Note that in order for the corners of the vehicles to maneuver around the obstacle, the maximum value of the Y coordinate of the center of the vehicle must be reach around 4.4 m at the corner of the turn.

Figure 37 shows the X-Y path of the vehicle's center for the vehicle in low gear setting mode with the axles and center differentials locked. The figure shows that the maximum speed that the vehicle can maneuver around the obstacle is 6 mph. At 7 mph the vehicle cannot return to a parallel path with the original vehicle path within 30 m. Figure 38 shows snapshots from the vehicle simulation at 6 mph.

Figure 37: X-Y path of the vehicle's center for the vehicle in low gear setting mode with the axles and center differentials locked while performing the side slope obstacle avoidance maneuver.

Figure 38: Snapshots of the vehicle simulation at 6 mph in low gear setting with the axles and center differentials locked while performing the side slope obstacle avoidance maneuver.

Figure 39 shows the X-Y path of the vehicle's center for the vehicle in high gear setting mode with the axles and center differentials open. The figure shows that the maximum speed that the vehicle can maneuver around the obstacle is 7 mph. At 8 mph the vehicle cannot return to a parallel path with the original vehicle path within 30 m. Figure 40 shows snapshots from the vehicle simulation at 7 mph.

Figure 39: X-Y path of the vehicle's center for the vehicle in high gear setting mode with the axles and center differentials open while performing the side slope obstacle avoidance maneuver.

Figure 40: Snapshots of the vehicle simulation at 7 mph in high gear setting with the axles and center differentials open while performing the side slope obstacle avoidance maneuver.

In summary the simulations give the following the values for the maximum 30% side slope 3 m obstacle avoidance maneuver vehicle speed:

- Low gear, Locked axles and center differentials. Max. Speed = 6 mph
- High gear, Open axles and center differentials. Max. Speed = 7 mph

7. EVENT 7: MAXIMUM LONGITUDINAL GRADE ON PAVEMENT

Simulations are carried out on paved (COF = 0.8) grades from 0 to 85%. The vehicle is accelerated at the maximum possible acceleration until the maximum speed is reached. The maximum speed is them plotted as a function of grade % with the transfer case set to low and high ranges. The following data as uploaded to the NATO ftp site:

- HighGearRange_00grade.csv; HighGearRange_05grade.csv; HighGearRange_10grade.csv; HighGearRange_15grade.csv; HighGearRange_20grade.csv; HighGearRange_25grade.csv; HighGearRange_30grade.csv; HighGearRange_35grade.csv; HighGearRange_40grade.csv; HighGearRange_45grade.csv; HighGearRange_50grade.csv; HighGearRange_55grade.csv; HighGearRange_60grade.csv; HighGearRange_65grade.csv.
- LowGearRange_00grade.csv; LowGearRange_05grade.csv; LowGearRange_10grade.csv; LowGearRange_15grade.csv; LowGearRange_20grade.csv; LowGearRange_25grade.csv; LowGearRange_30grade.csv; LowGearRange_35grade.csv; LowGearRange_40grade.csv; LowGearRange_45grade.csv; LowGearRange_50grade.csv; LowGearRange_55grade.csv; LowGearRange_60grade.csv; LowGearRange_65grade.csv; LowGearRange_70grade.csv; LowGearRange_75grade.csv; LowGearRange_80grade.csv; LowGearRange_85grade.csv.

Figure 41 shows the maximum vehicle speed versus grade on pavement in the high and low transfer case gear ranges.

Figure 41: Maximum vehicle speed versus grade on pavement in the high and low transfer case gear ranges.

8. EVENT 8: MAXIMUM LONGITUDINAL GRADE ON SAND

The vehicle is simulated on the KRC variable sand grade in which the grade varies from 0 to 30% with an increment of 5%. The sand type is 2NS sand. Based on the shear cell noLoad.xlsx results the cohesion of the 2NS sand is set to 1 kPa. Based on the KRC cone index experiments for the 2NS sand the sand cone index range is 50 to 70 psi. Using the cone penetrometer simulations and based on the cone index and the cohesion, the internal friction angle of the 2NS sand range is 22° to 25°.

Based on the simulations of the vehicle on the variable sand slope, the maximum slope that the vehicle can climb is in the range of 15% to 23%.

Figure 42: Snapshots of the FED vehicle going over the variable 2NS sand slope.

Figure 43: Vehicle slope as a function of time during the sand grade climb. The maximum slope reached is about 23%.

9. **EVENTS 9-12: HALF-ROUNDS 4-18 INCH**

Figure 44: Comparison between test and simulation: 10" half-round at speed from 5 to 17 mph: Time-histories of vertical acceleration at the driven seat.

A comparison between the DIS model simulation results and the test for the vehicle going aincreasing speeds over the 10" half-round bumps is shown in Figure 44. A summary of the DIS simulation results of the maximum

driver seat base acceleration for the FED vehicle going over 4", 8", 10" and 12" half-rounds is shown in Figure 45.

Figure 45: Driver seats base vertical acceleration versus vehicle speeds predicted using DIS for the vehicle going at increasing speeds over the 4", 8", 10", and 12" half-round bumps.

A comparison between the driver/passenger seats vertical acceleration vehicle speeds predicted using DIS model simulation results and the KRC experiments for the vehicle going at increasing speeds over the 4", 8", 10", and 12" half-round bumps is shown in Figure 46.

Figure 46: Driver/passenger seats vertical acceleration vehicle speeds predicted using DIS model simulation results and the KRC experiments for the vehicle going at increasing speeds over the 4", 8", 10", and 12" half-round bumps.

A comparison between the 2.5 g driver/passenger seats vertical acceleration vehicle speeds predicted using DIS model simulation results and the KRC experiments for the FED vehicle going over the 4", 8", 10", and 12" half-round bumps is shown in the table below.

Table 7: Summary of 2.5 g driver/passenger seats vertical acceleration vehicle speeds predicted using DIS model
simulation results and the KRC experiments for the vehicle going at increasing speeds over the 4", 8", 10", and
12" half-round bumps.

	DIS Test: Driver Seat Model Base (mph)		Test: Passenger Seat Base (mph)	Test: Driver Seat Pad (mph)	Test: Passenger Seat Pad (mph)	
4 inch	Nolimit	No limit	No limit	No limit	No limit	
8 inch	21	21	22.5	No limit	21	
10 inch	17	16.5	17.5	No limit	16	
12 inch	13	15	14.9	No limit	13.5	

10. EVENT 13-14: VERTICAL STEPS

We performed simulations of the vehicle going over 12", 18", and 24" vertical steps at a slow speed of about 0.5 m/s. The results are:

- 12" step is a go.
- There is slight interference on the bottom of the front bumper for the 18" step. Therefore, the 18" is a no go.
- There is major interference on the front bumper for the 24" step. Therefore the 24" step is a no go.

Figure 47: Snapshots of the vehicle going over 18" vertical step.

11. EVENT 15: V-DITCH

We performed a simulation of the vehicle going over the given V-ditch at about 0.5 m/s. The vehicle can cross the V-ditch with no interference.

Figure 48: Snapshots of the vehicle going over the KRC V-ditch.

12. EVENTS 16-18: DRAW-BAR PULL ON SOFT SOIL

We tuned the soil material properties for FGS-Dry, CGS-Dry, and FGS-Wet using the provided shear cell lab tests and the cone penetrometer in-situ tests (see Table 6). Based on those test the following material properties are used:

- Fine Grain Soil Dry (FGS-Dry)
 - Cone index range = 75 to 90 psi; Cohesion = 3.4 kPa, Average friction angle = 38°
- Coarse Grain Soil Dry (CGS-Dry)
 - Cone index range = 45 to 55 psi; Cohesion = 4.15 kPa, Average friction angle = 22°
- Fine Grain Soil Wet (FGS-Wet)
 - Cone index range = 20 to 25 psi; Cohesion = 3.4 kPa, Friction angle range = $11^{\circ} 13^{\circ}$.

Then, the tuned soil model was then used in the drawbar pull simulation (Figure 49) on the three soil types. The DIS model simulation and corresponding test results of the drawbar pull force versus slip are shown in Figure 50, Figure 51, and Figure 52.

Figure 49: Snapshot during of the drawbar pull simulation on FGS-Dry.

Figure 50: Test (inertia corrected) drawbar pull coefficient versus wheel slip results (top) and DIS model results (bottom) for FGS-Dry.

Figure 51: Test (inertia corrected) drawbar pull coefficient versus wheel slip results (top) and DIS model results (bottom) for CGS-Dry.

Figure 52: Test (inertia corrected) drawbar pull coefficient versus wheel slip results (top) and DIS model results (bottom) for FGS-Wet.

Notes:

- Drawbar pull physical test was conducted under unsteady state conditions (vehicle was decelerating). So it was not straight forward to extract the drawbar pull versus slip curve from the raw experimental data. The drawbar pull force had to be corrected for inertial forces which probably introduced errors into the drawbar pull force.
- The full tire radius should be used to calculate slip rather than a loaded tire radius. Otherwise the drawbarpull versus slip curve shows positive drawbar-pull at zero slip which is not physically possible since this means that the soil is propelling the vehicle forward while the tires are not producing traction forces. In the actual drawbar-pull test, the tires have to have some slip to overcome the soil resistance before starting to generate a drawbar-pull. The physical justification for using the full tire radius rather than a loaded tire radius is that the tire has a steel belt under the tread which keeps the tire circumference length constant independent of the normal load and tire air pressure.

13. EVENTS 20-22: ASYMMETRIC RMS 1 TO 3 INCH COURSES

DIS simulations were performed of the FED vehicle going at speeds from 5 to 20 mph on $1.0^{\circ} - 1.5^{\circ}$ and $1.5^{\circ} - 2.0^{\circ}$ asymmetric RMS test courses (Figure 53). From each simulation the absorbed vibration power at the driver seat base is extracted and plotted versus vehicle speed. This is then compared with the test results of absorbed vibration power versus vehicle speed at the driver and passenger seats base on pad. The results are shown in Figure 54 to Figure 57.

Figure 53: Snapshots from the vehicle simulation over the 1.0" – 1.5" asymmetric RMS test course.

Figure 54: Comparison between absorbed vibration power versus vehicle speed for the 1.0" – 1.5" asymmetric RMS test course.

Figure 55: Comparison between absorbed vibration power versus vehicle speed for the 1.5" – 2.0" asymmetric RMS test course.

Figure 56: DIS model vibration power versus vehicle speed for the 1.0" – 1.5" and 1.5" – 2.0" and asymmetric RMS test courses.

Figure 57: Comparison between test and DIS model for the 6W absorbed vibration power speed versus RMS amplitude for the asymmetric RMS test courses.

14. EVENTS 27-31: SYMMETRIC RMS 1 TO 5 INCH COURSES

DIS simulations were performed of the FED vehicle going at speeds from 4 to 16 mph on 1.0", 1.5", 2.0", 3.0" and 4.0" symmetric RMS test courses. From each simulation the absorbed vibration power at the driver seat base is extracted and plotted versus vehicle speed. This is then compared with the test results of absorbed vibration power versus vehicle speed at the driver and passenger seats base on pad. The results are shown in Figure 58 to Figure 65.

Figure 58: Comparison between DIS model and test for the 1.0" symmetric RMS course: Absorbed vibration power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.

Figure 59: Comparison between DIS model and test for the 1.5" symmetric RMS course: Absorbed vibration power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.

Figure 60: Comparison between DIS model and test for the 2.0" symmetric RMS course: Absorbed vibration power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.

Figure 61: Comparison between DIS model and test for the 3.0" symmetric RMS course: Absorbed vibration power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.

Figure 62: Comparison between DIS model and test for the 4.0" symmetric RMS course: Absorbed vibration power at the driver seat base versus vehicle speed. The solid black line is the DIS model simulation results.

Figure 63: DIS model absorbed vibration power at the driver seat base versus vehicle speed for the 1.0", 1.5", 2.0", 3.0", and 4.0" symmetric RMS courses.

Figure 64: KRC test absorbed vibration power at the driver seat base versus vehicle speed for the 1.0", 1.5", 2.0", 3.0", and 4.0" symmetric RMS courses.

Figure 65: Comparison between test and DIS model for the 6W absorbed vibration power speed versus RMS amplitude for the symmetric RMS test courses.

15. EVENT 32: MOBILITY TRAVERSE

DIS includes the capability to model both hard and soft soil long arbitrary topology and arbitrary length terrains. This capability was used to model vehicle going over the soft soil and hard terrain mobility traverse segments. Complex topography includes:

- 1. Sloped terrains: positive and negative long slopes and side slopes.
- 2. Roughness which can be modeled using wave length versus amplitude.
- 3. Discrete ditches and bumps specified by depth, width, and spacing distribution.
- 4. Turns.
- 5. Variable soil/terrain conditions along the terrain.

Hard terrains long arbitrary topology are represented using polygonal surfaces (consisting of triangles and/or quadrilateral faces) of the following types:

- A 2D digitized surface (Figure 66).
- A 1D distance versus height list (Figure 53). This surface was used to model RMS courses. Left and right track surfaces can be different.

A master/slave contact model is used where contact is detected between discrete points on a master contact surface (such as tire or track) and a polygonal slave contact surface [5-9] (the terrain). A general fast binary-tree hierarchical bounding box/sphere contact search algorithm allows DIS to quickly find the contact penetration between points on a master contact point and the contact polygon on the slave contact surface [8, 9]. The penalty technique including both normal stiffness and damping is used for imposing the normal contact constraint [5-9] between the master and slave contact surfaces. The penalty stiffness and damping are set to the resultant stiffness and damping of the running gear (tire/track segment) and the terrain. Contact friction is modeled using an accurate and efficient asperity-based friction model [4, 6]. In addition, the coefficient of friction and road compliance between the running gear and the road can be set as a function of the distance along the vehicle steering path.

Figure 66: Segment of an ordered i-j quadrilateral terrain.

DIS also includes the capability of modeling soft soil complex topography terrains of arbitrary length using a moving soil patch technique [10]. Using this technique particles which are far behind the vehicle are continuously eliminated and then reemitted as new particles in front of the vehicle. The terrain is defined using an *i-j* ordered quadrilateral grid along with an emitter surface, a leveling surface, and a sink surface (Figure 67). The simulation starts by filling a rectangular range, say from i_1 to i_2 and j_1 to j_2 , where the *i* index is along the length of the soil patch and *j* is along the width, on the *i-j* terrain surface with DEM particles up to a desired depth. Side wall surface at $j = j_1$ and $j = j_2$ along with the sink and emitter surfaces keep the particles inside the soil box. Then, the initial particles are compressed and leveled from the top using the terrain surface such that the same terrain topography is impressed on the soft soil. Next, the sink, emitter, and leveling surfaces are enabled and moved along with the center of the vehicle. When a particle from a random point on the emitter surface in front of the vehicle. The leveling surface levels and compresses the DEM particles that are emitted from the emitter surface. This effectively moves the soil patch along with the vehicle on the terrain. Since the sink, emitter and leveling surfaced all follow the underlying terrain's *i-j* surface, the topography of the soft soil

patch follows the topography of the terrain's *i-j* surface. Figure 68 shows snapshots of typical vehicle simulations on complex topography terrains with terrain roughness, turns, and variable long slopes.

Figure 67: Moving DEM complex topography terrain patch modeled using an *i-j* ordered quadrilateral grid representing the terrain's surface, an emitter surface, a leveling surface, and a sink surface.

Figure 68: Snapshots of the moving DEM complex topography terrain patch in typical vehicle mobility simulations: 90° turn (left) and going down a slope (right) on rough soft soil terrains.

The moving soil patch technique ensures that the number of DEM particles remains constant and relatively small for long vehicle travel distances, and that the simulation can complete in a reasonable amount of time. To reach its maximum speed of 60 mph from rest and run a few seconds at steady-state, the vehicle needs about a

400 m long terrain patch. If the patch width is 3.5 meters, consolidated soil depth is 0.4 meters, and consolidated particle diameter is 26.5 mm, then the required number of particles is about 67,000 particles per meter of terrain. So for a 400 m long terrain patch about 27 million particles are needed. At current simulation computational speeds, a 40 sec simulation with 27 million particles will take about 4.5 months to complete on five 32 core HPC nodes. However, for typical DIS vehicle mobility simulations, the moving terrain patch is about 9 m to 11 m long and the number of particles is about 600k to 1M, a 40 sec vehicle simulation takes about 2.5 to 5 days on five 32 core HPC nodes.

The following tasks were performed to create the mobility traverse simulations:

- The traverse surface which was provided as a set of TIN files was loaded into the IVRESS software (Figure 69).
- A capability to convert the traverse TINs to an ordered *i-j* quadrilateral mesh for DIS's complex terrain topography moving soil patch was developed (Figure 70).
- The complex terrain topography was tested on a typical traverse segment (Figure 71).
- The variable sand grade was used as test for the traverse segments (Figure 72). The maximum slope achieved in the run was 13.37%.
- The vehicle steering paths data for the 14 traverse segments was cleaned (Figure 73).
- The soil type along the 14 traverse segments was extracted from the Map11 terrain file.
- Initial vehicle speed as a function of distance along each traverse segment was specified for the 14 traverse segments.

Figure 69: Traverse triangular network (TIN) surface.

Figure 70: Conversion of the traverse triangular network surface into an ordered i-j mesh.

Figure 71: Snapshots of test traverse simulations using the complex topography moving terrain patch technique.

Figure 72: Snapshots of the variable sand grade simulation using the complex topography moving soil patch technique.

Figure 73: Steering paths for the 14 traverse segments.

Multiple simulations were performed for the assigned traverse segments with increasing speed in order to find the maximum speed as a function of time each traverse segment. The following results were obtained for the assigned mobility traverse segments:

- DEM soft soil segments:

- **Y5**: Sinusoidal thru Coarse Grain Soil Pit. Figure 74 shows snapshots of the Y5 traverse segment simulation. Figure 75 shows comparison between the DIS model and test vehicle speeds for the Y5 traverse segment.
- **Y7**: 90° in Fine Grain Wet Soil pit. Figure 76 shows snapshots of the Y7 traverse segment simulation. Figure 77 shows comparison between the DIS model and test vehicle speeds for the Y7 traverse segment.
- **B2**: Down Sand Grade with short length of gravel pad. Figure 78 shows snapshots of the B2 traverse segment simulation. Figure 79 shows comparison between the DIS model and test vehicle speeds for the B2 traverse segment.
- **Up sand grade**. Figure 42 shows snapshots of the FED vehicle going over the variable 2NS variable sand grade. Figure 43 the vehicle slope as a function of time during the climb. The vehicle can climb up to 15% to 23% depending on the value of the soil internal friction angle which ranges from 22° to 25°.
- Hard terrain segments:
 - Y1: Transition to Panic Stop Secondary Road, Sinusoidal of Packed Trail, and Packed Trail (Figure 80).
 - Y2: Transition from Max Acceleration Secondary Road & Packed Trail (Figure 81).
 - Y3: Wadi (Figure 82).
 - Y4: Transition Packed Trail (Figure 83).
 - Y6: Transition Secondary Road and Packed Trail (Figure 84).
 - Y8: Side Slope & RMS 2.0 (Figure 85).

Figure 74: Snapshots of the FED vehicle crossing the Y5 (Sinusoidal thru Coarse Grain Soil Pit) segment.

Figure 75: Vehicle speed for the Y5 (Sinusoidal thru Coarse Grain Soil Pit) traverse segment: Comparison between test and DIS model results.

Figure 76: Snapshots of the FED vehicle crossing the Y7 (90° turn in Fine Grain Wet Soil Pit) segment.

Figure 77: Vehicle speed for the Y7 (90° turn in Fine Grain Wet Soil Pit) traverse segment: Comparison between test and DIS model results.

Figure 78: Snapshots of the FED vehicle crossing the B2 (Down Sand Grade with short length of gravel pad) segment.

Figure 79: Vehicle speed for the B2 (Down Sand Grade with short length of gravel pad) traverse segment: Comparison between test and DIS model results.

Figure 80: Vehicle speed for the Y1 (Transition to Panic Stop - Secondary Road, Sinusoidal of Packed Trail, and Packed Trail) traverse segment: Comparison between test and DIS model results.

Figure 81: Vehicle speed for the Y2 (Transition from Max Acceleration - Secondary Road & Packed Trail) traverse segment: Comparison between test and DIS model results.

Figure 82: Vehicle speed for the Y3 (Wadi) traverse segment: Comparison between test and DIS model results.

Figure 83: Vehicle speed for the Y4 (Transition - Packed Trail) traverse segment: Comparison between test and DIS model results.

Figure 84: Vehicle speed for the Y6 (Transition - Secondary Road and Packed Trail) traverse segment: Comparison between test and DIS model results.

Figure 85: Vehicle speed for the Y8 (Side Slope & RMS 2.0) traverse segment: Comparison between test and DIS model results.

16. GO-NOGO AND MOBILITY MAPS

The KRC soils were divided into two types A and B, where A are relatively weak soils and B are relatively strong soils. The ranges of cohesion, friction angles, and bulk density of the soils are given below:

- A soils:
 - Cohesion: 0 to 4 kPa
 - \circ Friction angle: 15.5° to 44.5°
 - Bulk density: 1290 to 1930 kg/m³
- B soils:
 - o Cohesion: 6.25 to 20.75 kPa
 - \circ Friction angle: 24° to 50°
 - Bulk density: 1550 to 2020 kg/m³

The minimum slope of the KRC terrain is 0 degrees and the maximum slope is about 40 degrees. Note that more than 99% of the terrain has a slope of less than 16.7% degrees (30% grade). Therefore, most of the simulations are performed in the lower slope range. The DOE variables are:

- 1. Soil cohesion
- 2. Soil friction angle
- 3. Soil bulk density
- 4. Terrain long slope.

Four sets of DOE runs were performed:

- Set #1: of 60 DOE points (Table 8).
- Set #2: of 60 DOE points.
- Set #3: of 50 DOE points.
- Set #4: of 40 DOE points.

The deterministic go-nogo and speed-made-good mobility maps are shown in Figure 86 and Figure 87, respectively. The non-deterministic UQ go-nogo and speed-made-good mobility maps are shown in Figure 88 and Figure 89, respectively.

#	SoilType	Phi_Degrees	C_kPa	BulkDensity_kgm3	Slope_Degrees	Speed (m/s)	#	SoilTyp	e Phi_Degrees	C_kPa	BulkDensity_kgm3	Slope_Degrees	Speed (m/s)
1	A_Soils	15.5	1.2666667	1620.45	26.5	0.000	31	B_Soils	24.433333	10.75	1795.8333	26.5	6.542
2	A_Soils	16.5	3	1927.05	29.5	0.000	32	B_Soils	25.3	17.25	2015.1667	29.5	1.003
3	A_Soils	17.5	1.6666667	1313.85	7.5	5.766	33	B_Soils	26.166667	12.25	1576.5	7.5	15.183
4	A_Soils	18.5	1.5333333	1686.15	2.5	9.408	34	B_Soils	27.033333	11.75	1842.8333	2.5	15.988
5	A_Soils	19.5	2.3333333	1642.35	12.5	5.753	35	B_Soils	27.9	14.75	1811.5	12.5	14.469
6	A_Soils	20.5	3.2666667	1795.65	22.5	1.849	36	B_Soils	28.766667	18.25	1921.1667	22.5	9.986
7	A_Soils	21.5	3.8	1335.75	16.5	6.230	37	B_Soils	29.633333	20.25	1592.1667	16.5	12.442
8	A_Soils	22.5	0.33333333	1423.35	9.5	4.952	38	B_Soils	30.5	7.25	1654.8333	9.5	14.630
9	A_Soils	23.5	1.8	1905.15	13.5	6.662	39	B_Soils	31.366667	12.75	1999.5	13.5	14.067
10	A_Soils	24.5	0.73333333	1357.65	21.5	1.597	40	B_Soils	32.233333	8.75	1607.8333	21.5	8.970
11	A_Soils	25.5	0.46666667	1817.55	18.5	2.430	41	B_Soils	33.1	7.75	1936.8333	18.5	10.232
12	A_Soils	26.5	3.9333333	1598.55	4.5	14.412	42	B_Soils	33.966667	20.75	1780.1667	4.5	16.178
13	A_Soils	27.5	2.6	1467.15	24.5	1.871	43	B_Soils	34.833333	15.75	1686.1667	24.5	9.003
14	A_Soils	29.5	0.2	1554.75	15.5	5.297	44	B_Soils	36.566667	6.75	1748.8333	15.5	11.386
15	A_Soils	30	2	1609.5	15	8.522	45	B_Soils	37	13.5	1788	15	13.725
16	A_Soils	30.5	2.8666667	1839.45	28.5	0.000	46	B_Soils	37.433333	16.75	1952.5	28.5	7.975
17	A_Soils	31.5	3.6666667	1532.85	19.5	7.497	47	B_Soils	38.3	19.75	1733.1667	19.5	11.791
18	A_Soils	32.5	1	1708.05	1.5	15.071	48	B_Soils	39.166667	9.75	1858.5	1.5	16.460
19	A_Soils	33.5	1.1333333	1664.25	27.5	0.000	49	B_Soils	40.033333	10.25	1827.1667	27.5	7.616
20	A_Soils	34.5	0.6	1861.35	17.5	7.206	50	B_Soils	40.9	8.25	1968.1667	17.5	11.578
21	A_Soils	35.5	1.4	1291.95	25.5	1.513	51	B_Soils	41.766667	11.25	1560.8333	25.5	8.253
22	A_Soils	36.5	3.4	1773.75	10.5	14.083	52	B_Soils	42.633333	18.75	1905.5	10.5	15.326
23	A_Soils	37.5	3.1333333	1729.95	0.5	16.154	53	B_Soils	43.5	17.75	1874.1667	0.5	16.769
24	A_Soils	38.5	1.9333333	1883.25	14.5	11.073	54	B_Soils	44.366667	13.25	1983.8333	14.5	14.384
25	A_Soils	39.5	3.5333333	1379.55	3.5	15.754	55	B_Soils	45.233333	19.25	1623.5	3.5	16.357
26	A_Soils	40.5	2.7333333	1401.45	11.5	14.112	56	B_Soils	46.1	16.25	1639.1667	11.5	15.033
27	A_Soils	41.5	2.0666667	1751.85	8.5	14.911	57	B_Soils	46.966667	13.75	1889.8333	8.5	15.540
28	A_Soils	42.5	0.86666667	1445.25	5.5	15.226	58	B_Soils	47.833333	9.25	1670.5	5.5	15.803
29	A_Soils	43.5	0.066666667	1510.95	20.5	7.074	59	B_Soils	48.7	6.25	1717.5	20.5	10.822
30	A_Soils	44.5	2.4666667	1576.65	23.5	7.544	60	B_Soils	49.566667	15.25	1764.5	23.5	9.995

Table 8: Speed-made-good results of mobility map DOE set #1.

Figure 86: Deterministic go-nogo map.

Figure 87: Deterministic speed-made-good mobility map.

Figure 88: Non-deterministic go-nogo UQ maps.

Figure 89: Non-deterministic speed-made-good mobility UQ maps.

4. CONCLUSIONS, GAPS, AND PATH FORWARD

The following new capabilities were developed during the CDT:

- 1. Soil model calibration procedure based on CI and shear cell data.
- 2. Complex topography moving soil patch for modeling the soft soil traverse segments.

The following CDT issues need further work:

- 1. Shear cell, tri-axial, and bevameter tests with the soil under a normal load result in soil internal friction angle which is much higher than the soil friction angle measured using a CI or the drawbar pull tests. Thus we need to investigate the effects of confinement on soil mechanical response.
- 2. Drawbar-pull test should be performed under steady-state conditions.
- 3. Drawbar-pull force should be zero for up to a certain value of positive slip because slip is needed to overcome the soil/terrain motion resistance. Thus, we need to modify the standard algorithm to calculate tire slip including the tire radius for slip calculations.

Finally, the following tasks are needed in order to develop an operational NG-NRMM vehicle mobility tool that can be replace NRMM:

- Validate and calibrate DEM complex terramechanics soil models for all soil types. This will include developing a database of calibrated DEM soil models to include: 20 USCS soil types, 7 moistures, and 3-5 temperatures.
- Investigate/develop a soil classification system designed for vehicle mobility applications.
- Validate and calibrate of finite Element tire soil models.
 - Develop, calibrate & validate models for:
 - Multi-layer terrains.
 - Water covered soft soil terrains.
 - Heterogeneous terrain.
 - Vegetation (Figure 90 and Figure 91).
 - Urban obstacles.
- Perform fundamental research of micro-scale soil models which model individual soil particles along with the inter-particle forces including: elastic, friction, and capillary liquid bridging forces.
- Develop terramechanics experiments to measure soil damping, viscosity, and dilation.
- Add visibility (due to terrain topography and obstacles) as a mobility parameter.
- Develop a stochastic mobility expert system to generate vehicle mobility maps, while considering all terrain parameters, for manned and unmanned (autonomous and semi-autonomous) vehicles.

Figure 90: Coupled vegetation – vehicle simulation. Vegetation blades are modeled using thin beam elements.

Figure 91 combined vegetation beam element model with the soft soil DEM model.

APPENDIX A: FED-ALPHA MODEL SPREADSHEETS

Vehicle Frame										
Vehicle1	Comment:	FED-Alpha Vehicle Frame Data								
Parameter Description	Symbol	Value1	Value2	Value3 U	nits					
Enable vehicle	Enabled	Yes								
Vehicle global position (ground point at center of front axle)	GlobalPos	1	0	0.13						
CG position (X, Y, Z) relative to center of front axle	CG	-1.6	0	0.44 m		C _x	C.G.			
Mass of frame/body	М	4164		kg		7	1 .			
Inertia of frame/body around (length, width, height) directions	Ι	3300	12302	13803 kg	.m ²	1ª	C_z		(a.W.)	
Off-diagonal Inertia of frame/body around (Ixy, Ixz, Iyz)	Ioff	0	0	0 kg	.m ²		- 1	Ele	A Como	
Frame icon file name	File	\VRML\FED_Vehicle.wrl			-				and the second	<u></u>
Frame icon translation (X, Y, Z)	Trans	1.264	0	-0.708						
Frame icon scale (X, Y, Z)	Scale	1	1		-				-	
Euler Angles	Angles	90	0						1011	
Initial icon visibility	IconVisible	Yes							795	
Front Axle	FrontAxle	Axle1			Y'	c_x	J. U .			
Back Axle 1	BackAxle1	Axle2			X <		C _y			
Back Axle 2	BackAxle2	None				17				
Steering	Steering	PitmanAm1			T	11		ę	110	
Motor	Motor Staan And Snaad	ICengine1				101-		11	Gill	
venicie Steering and Speed	sieerAnaspeea	SteeringAndSpeed I						6	200	
Air density	Ro Air	1.225								
Vehicle frontal area	Area Front	3.8			1					
Vehicle side area	Area Side	4.2		m ²						
Vehicle top area	Area Top	4.86		m²		5694.3	0.656142			
Characteristic lift length	L _{Lift}	2		m		1.447368	4396.149	16403.54	18371.96	
Aerodynamic frontal drag coefficient	C DragFront	0.6				4.861111				
Aerodynamic side drag coefficient	C DragSide	1								
Aerodynamic top drag coefficient	C DragTon	1				0.81624				
Aerodynamic lift coefficient	Clift	0								
Aerodynamic lift moment coefficient	C MomLift	0								
Wind velocity	V wind	0	0	0 m/	s					
Slave contact geometry file	SlaveContFile	\VRML\VehicleContactSurface.wrl								
Slave contact geometry translation (X, Y, Z)	TransSlave	1.264	0	-0.7085 m						
Slave contact geometry scale (X, Y, Z)	ScaleSlave	1	1	1						
Slave contact geometry Euler Angles	AnglesSlave	90	0	0 de	gree					
Initial slave contact surface visibility	SlaveVisible	No								
Master contact geometry file	MasterContFile									
Master contact geometry translation (X, Y, Z)	TransMaster	0	0	0 m						
Master contact geometry scale (X, Y, Z)	ScaleMaster	0	0	0						
Master contact geometry Euler Angles	AnglesMaster	0	0	0 de	gree					
Initial master contact surface visibility	MasterVisible	No								
Bounding box size (X, Y, Z)	BoundBoxSize	0	0	0 m						
Bounding box center (X, Y, Z)	BoundBoxCenter	0	0	0 m						
Bounding box rotation euler angles	BoundBoxAngles	0	0	0 de	gree					
Enable shared memory parallel processing for vehicle	parallel	Yes								

Engine & Gear Box

ICengine1			This a c	om	ment													
Parameter Description	n Symbol	Value1	Units	F	ull Throttle Tor	que-S	peed	Eng	gine Brake '	Forque-Spe	ed				Forward Ge	ars		
Proportional Gain	propGain	10		#	Ang.Vel.(RPM)	Torqu	e (N.m)	An	g.Vel.(RPM)	Torque (N.	m)	Gear #	Gear Ratios	Gear Losses %	Min Shift RF	PM N	Max Shift RPM	Shift time (s)
Derivative Gain	derGain	0		1	0		370		0	-	185	1	3.74	25	i i	0	2400	0.3
Enable Traction control	traction	no		2	700		400		700	1	200	2	2.003	32	10	000	2400	0.3
Max. allowable wheel slip	maxSlip	200	%	3	800	416.6	950612		800	-208.3475	306	3	1.343	43	10	000	2400	0.3
Zero torque slip	noTorqueSlip	400	%	4	900	458.3	8192975		900	-229.1596	487	4	1	50	10	000	2400	0.3
Maximum forward gear	maxForeGear	6		5	1000	551.2	685618		1000	-275.6342	809	5	0.773	55	10	000	2350	0.3
Maximum backward gear	maxBackGear	1		6	1100	640.7	633944		1100	-320.3816	972	6	0.634	57	10	000	2300	0.3
Drive shaft mass	driveMass	40	kg	7	1200	724.5	875491		1200	-362.2937	745							
Rotating drive inertia	driveInertia	20	kg.m^2	8	1300	758.0	528184		1300	-379.0264	092							
Additional gear ratio	gearRatio2	1		9	1400	793.2	492416		1400	-396.6246	208							
Additional gear losses	gearLoss2	0		10	1500	794.0	891567		1500	-397.0445	784							
				11	1600	789.4	936568		1600	-394.7468	284							
				12	1700	787.3	3347752		1700	-393.6673	876							
				13	1800	768.7	168608		1800	-384.3584	304					_		
				14	1900	752.	058972		1900	-376.029	486					_		
				10	2000	686.4	1513864		2000	-306.4367	209					-		
				17	2200	674.6	845266		2200	-337 3422	633							
				18	2300	636.3	3604335		2300	-318,1802	167							
				19	2400		550		2400	-	275							
				20	2500		350		2500	-	175							
				21	2525		320		2525	-	160							
				22	2700		0		2700		0							
1000	Forward Torg	ue-Spe	ed Curv	/e		- 1				Forward	Eng	aine To	rque-Spe	ed Curve	·			
800						_	_	900 ·					· ·					
				_			4	800 .										
600						-	4	700 ·			1							
Ê 400					_\	_	Ê	600 ·			/					_		
							- ż	500 .										
9 ²⁰⁰						-	- e	400 .								-		
2 0					``````	-	Ē	300 -										
⊢ Ĕ ●	500 1000	1500	200	0	2500 :	3000	ΗĔ	200 -										
-200						_	٦	100 -										
-400				_	-	-	٦	0 -	0 50	0 10	00	1500	2000	2500	3000			
-600	Angula	r Veloci	ty (RPI	M)		_			- 00	Ar	ngula	ar Velo	city (RPN	1)				
-000				36			~					1	, (Í				

Steering System

SteeringPitmanArm1	Comment:					
Parameter Description	Symbol	Value1	Value2	Value3	Units	
Enabled	enabled	Yes				Tie Rod Connection: Center link
Hard points reference frame origin	origin	Axle Center				Steering Bevel Box
Ttie rod inner point p1	<i>p</i> ₁	-0.223702	0.381	0.105228	m	Gear P2
Tie rod outer point p ₂	<i>p</i> ₂	-0.2	0.818897	0.066082	m	
Pitman arm rearward point p_3	<i>p</i> ₃	-0.41026	0.381	0.209605	m	
Pitman arm foreward point p_4	<i>p</i> ₄	-0.291973	0.381	0.166557	m	
Idler arm rearward point p_5	<i>p</i> 5	-0.41026	-0.381	0.209605	m	
Idler arm foreward point p_6	<i>p</i> ₆	-0.291973	-0.381	0.166557	m	
Tie rod connection	tieRodConn	Arm				
Pitman arm mass	m pitman	4			Kg	Pitman
Pitman arm inertia	İ pitman	0.002	0.04	0.04	Kg.m ²	Am
Idler arm mass	m idler	4			Kg	P5 P6
Idler arm inertia	i _{idler}	0.002	0.04	0.04	Kg.m ²	Link Tie Rod(s)
Center link mass	m center	6			Kg	
Center link inertia	i center	0.006	0.08	0.08	Kg.m ²	Litter Arm
Tie rod mass	m tierod	1			Kg	Idler Am
Tie rod inertia	i _{tierod}	0.002	0.04	0.04	Kg.m ²	Tie Rod Connection: Arm (Pitman and Idler arms)
Steering gear ratio	gearRatio	1				
Steering column stiffness	steerStiff	88888.8889			N.m/rad	
Steering column damping	steerDamp	0			N.(m.s)/rad	
Steering column inertia	steerInertia	0.0493			Kg.m ²	
Steering column stop stiffness	steerStopStiff	222222.222			N.m/rad	
Steering column stop damping	steerStopDamp	8			N.(m.s)/rad	
Steering positon gain	steerPosGain	0.2				
Steering heading direction gain	steerDirGain	0.25				
Maximum steering wheel torque	max Torque	6000			N.m	
Speed controller gain (wheel Torque/RPM)	speedGain	0.8				P2 Tia Center link
Look ahead time	timeAhead	1			sec	rod p40 conter mix p6 rod
Steering averaging time	steerAveTime	0.1			sec	
Min steering distance	steerDistance	5			m	Pitman Idler
Minimum steering wheel angle	minSteerAngle	-28			degree	arm arm
Maximum steering wheel angle	maxSteerAngle	28			degree	

Front Axle

Axle1	Comment:	Front axle									
Parameter Description	Symbol	Value1	Units							-	
Axle Propulsion	prop Axle	on		-	i i					- 1	
Distance to front axle	l	0	m	C							
Axle width (distance between wheels)	w	1.9785		THE OWNER OF	2		3			51	a company
Axle height above ground	h	0.415		- Comment	$\leq a_{w2}$	a	¢1	-		21	
See figure	a_{w1}	0.25	m	6	2			,	7 😐	\$	
See figure	a_{w2}	0.575877	m					w			
Mass of axle	m _{Axle}	120	kg					-	+		
Rotational inerita	j _{Axle}	5	kg.m ²								
Size of differential	diffSize Axle	0.26	m								
Differential Model	diffModel	Analytical				0.825877					
Mass of differential	m _{Diff}	30	kg			0.825877					
Final Differential drive ratio	ratio	4.88									
Tire	tire	TireLumped1									
Suspension	suspension	SuspDWB1									
Brake	brake	Brake1									
Brake multiplier	brakeMult	1									
Axle Joints	jointType	CV-joint		<u> </u>							
Lock Differential	lock	no									
Antiroll bar	antiRoll	AntiRollBar1									

Rear Axle

Axle2	Comment:	Rear axle								
Parameter Description	Symbol	Value1	Units				1			
Axle Propulsion	prop _{Axle}	on			i				- 1	المتحما
Distance to front axle	l	3.302	m	C	1		~ ~			
Axle width (distance between wheels)	w	1.9785		Transa .	2		Shaft		 1	20100
Axle height above ground	h	0.415		Station of the	$\leq a_{w2}$	a_{w1}		t	21	
See figure	a_{w1}	0.25	m		2			H	\$	
See figure	a_{w2}	0.575877	m				W			
Mass of axle	m _{Axle}	120	kg			1	-	+	 1	
Rotational inerita	j Axle	5	kg.m ²							
Size of differential	diffSize Axle	0.26	m							
Differential Model	diffModel	Analytical								
Mass of differential	m _{Diff}	30	kg							
Final Differential drive ratio	ratio	4.88								
Tire	tire	TireLumped1								
Suspension	suspension	SuspDWB2								
Brake	brake	Brake1								
Brake multiplier	brakeMult	0.8								
Axle Joints	jointType	CV-joint								
Lock Differential	lock	no								
Antiroll bar	antiRoll	None								

Transfer Case

TransferCase1	Comment:						
Parameter Description	Symbol	Value1	Units				
Vehicle	vehicle	Vehicle1					
Driver	driver	Vehicle1					
First Axle	ax le 1	Axle1					
Second Axle	axle2	Axle2					
Lock	lock	Yes					

Brake

Brake1			_							
Wheel	max braking to	rque-speed		14000 T	Tor	aue-Spe	ed Curv	e		
#	Wheel RPM	Torque (N.m)		12000		4				
1	0	12000		12000						
2	125	12000		10000	1					
3	250	8000		10000	1					
4	375	8000	1	8000						
5	500	8000	Z	<u>z</u>						
6	625	8000	9	8 6000 -						
7	750	8000		2						
8	875	8000	E F	2 4000 +						
9	1000	8000								
10	1125	8000		2000 -						[
11	1250	8000								
12	1375	8000		0 +						
13	1500	8000		0	500	Δησι	ular Velo	1500 city (RPI	2000	2500
14	1625	8000				Ange	andi Velo		•••	
15	1750	8000								
16	1875	8000								
17	2000	8000								
18										

Tire

TireLumped1	Comment:							4	width _{Mi}	dTire								
Parameter Description	Symbol	Value1	Value2	Value3	Units			100	midth		1							
Wheel mass	m Wheel	102.62			kg				widthou	atTire 🕨					13.184			
Wheel rotational inertia	Ĵ Wheel	13			kg.m ²			-	000									
Wheel radial inertia	i Wheel	10			kg.m ²		T	D	0000	00								
Wheel icon file name	file Wheel	\VRML\FEDwheel.wrl				T .												
Wheel icon translation (length, width, height)	trans wheel	C	0	C	m	1		1)}							
Wheel icon scale (radius, width)	scale wheel	1	1			radius		//			//		T					
Wheel icon Euler angles	angles Wheel	C	0	C	degree	Tadius ₀	utTire	7/		1	4		radiue					
Tire surface file name	file _{Tire}	\VRML\FED_Tire2.wrl								(4		ladius	MidTire				
Tire surface translation (length, width, height)	trans Tire	C	0	C	m				midel		rad	iuswheel						
Tire surface scale (radius, width)	scale Tire	1	1				1		widthw	heel			L					
Tire euler angles	angles Tire	C	0 0	C	degree						1							
Tire Model Type	tireModel	Std_TireCorrPatch																
Standard tire Wheel width	width Wheel	0.24			m			47		(Ų							
Standard tire Middle of tire width	width MidTire	0.3			m			1/			11							
Tire outer width for display & area calculations	width OutTire	0.25			m			1										
Tire outer width for contact calculations	width Contact	0.2			m			())							
Tire width divisions	widthDivs	1				Į		1			//							
Standard tire Wheel radius	radius Wheel	0.285			m			L	h	m	(
Standard tire Middle of tire radius	radius MidTire	0.4			m				•	-								
Outer tire radius	radius OutTire	0.5055			m			(F	widthe	Conact								
Tire contact tolerance	tol Tire	0.25			m			(a.	licente con	auct mroun	<u> </u>							
Tire coefficient of friction	mu Tire	0.8				Notes	:											
Tire friction spring stiffness per unit area	fricSpring Tire	1.00E+09			N/m/m ²	The tir	e con	tact su	face for	pavem	ient is d	defined	by the					
Tire velocity stiffness per unit area	velStiff Tire	1.00E+07			N/(m/sec)/m ²	follow	ing pa	aramete	rs:									
Tire normal stiffness per unit area	norStiff Tire	0.00E+00			N/m/m ²	- radiu	IS _{OutTin}	re										
Tire normal force per unit area	norForce Tire	Graph3			N/m ²	- widtl	n _{OutTin}	2										
Tire normal damping per unit area	norDamp Tire	c)		N/(m/sec)/m ²	- widt	n _{Contac}	t										
Time additional damping per unit area vs penetration	addDamp Tire	Graph13			N/(m/sec)/m ²	- wiati	Contac	t										
Tire separation damping factor	sepDamp Tire	1				The tir	e con	tart su	facefor	soft DI	M soil	is defin	ed hy f	ile				
Normal averaging	normalAve	C				surfac	- c con	luct Sul	Tucc Tor	301101		is actin	cubyi	Tire				
Pneumatic trail as a function of normal force	pneumaticTrail	Zero			m	Junio	с.							-				
Rolling radius (with loaded vehicle)	radius _{Tire}	0.5055			m	If file,	is d	efined t	hen it is	used to	o initial	ly displa	v the	tire.				
Tire nominal width	width Tire	0.24			m	1	ie					,						
Number of tires	num _{Tire}	1																
Center distance between tires	centerDist Tire	0.3			m		_	_										
Number of circumference divisions	circDivs Tire	128	6															
Use Pacejka magic formula	magicFormula	Pacejka89					_											
Pacejka lateral force parameters	pacejkaLateral	1.0012	-0.6774	1017.452	5707.292	62.6561	0 0.00	8 0.9419	0.1124	-0.0026	-0.1197	-17.2366	9.9733	-10.7445				
Pacejka lateral force scale	pacejkaLateralScale	4 0000	0.2200	11 000	0.0000	6 6705	0	0 0 0000	0.202		0.2507	0.01/77	0.0014	0.2200	0.0104	0.764	2.275	40.70
Paceika aligning moment parameters	paceikaAlignTorqueScale	1.6392	-0.2209	-11.238	-0.0298	-0.0725	<u> </u>	0.0030	-0.202	2	0.0090	0.0157	0.0011	0.2290	0.0194	-0.104	-2.210	-10.10
,	1				1													

Front Suspension System

SuspDWB1	Comment:	Front suspension syste	em		
Parameter Description	Symbol	Value1	Value2	Value3	Units
Hard points reference frame origin	origin	Axle Center			
Upper control arm inner front point $P_1(X, Y, Z)$	<i>p</i> ₁	0.139748	0.29579	0.2872	m
Upper control arm inner rear point P2 (X, Y, Z)	<i>p</i> ₂	-0.176137	0.29579	0.2872	m
Lower control arm inner front point $P_3(X, Y, Z)$	<i>p</i> ₃	0.279309	0.21821	-0.10418	m
Lower control arm inner rear point $P_4(X, Y, Z)$	p_4	-0.305945	0.21821	-0.07315	m
Upper knuckle outer point $P_{5}(X, Y, Z)$	D s	-0.00922569	0.77536	0.24432	m
ower knuckle outer point P. (X, Y, Z)	<i>P</i> 5	0.00522000	0.0500	0.16006	
Lower sumanian strut lower point $P_{0}(X, Y, Z)$	<i>P</i> 6	0.00500887	0.0002	-0.10220	
Lower suspension structiower point $P_7(X, Y, Z)$	<i>p</i> ₇	0.118962	0.65018	-0.1002	m
Upper suspension strut upper point P ₈ (X, Y, Z)	<i>p</i> ₈	0.118963	0.49338	0.57659	m
Lower Suspension Strut P7 is connected to:	strutConn	Lower control arm			
Strut Data	strut	Spring1			
Mass of upper control arm	mU	8.49			kg
Mass of lower control arm	m _L	31.55			kg
Mass of knuckle	m _K	58.44			kg
Mass of strut lower part	m _{SL}	15			kg
Mass of strut upper part	m su	16			kg
Moment of inertia of upper control arm	i	0.3	0.3	0.3	kg.m ²
Moment of inertia of lower control arm	. U	0.5	4		ka m ²
moment of mertia of lower control arm	1 L	1			ka m ²
Moment of inertia of knuckle	1 K	1	1	1	kg.m
Moment of inertia of strut lower part	i _{SL}	0.03	0.6	0.6	кg.m²
Moment of inertia of strut upper part	i _{su}	0.03	0.6	0.6	kg.m ²
Upper right control arm icon	file UR	/VRML/FrontUCAR.w	rl		
Upper right control arm icon translation (X, Y, Z)	trans up	n	0	0	m
Upper left control arm icon	file	/VRMI /Frontl ICAL w	1		1
Upper left control arm icon translation (Y V 7)	file UL	VINIET TUTLUGAL.W		-	
	trans UL	0	0	0	m
upper control arm Icon scale (X, Y, Z)	scale U	1	1	1	
Lower right control arm icon	file _{LR}	/VRML/FrontLCAR.wr	1		
Lower right control arm icon translation (X, Y, Z	trans LR	0	0	0	m
Lower left control arm icon	file 11	/VRML/FrontLCAL.wr	1		
Lower left control arm icon translation (X, Y, Z)	transu	0	0	0	m
ower control arm icon scale (X, Y, Z)	sagle			-	
Kennelde elektrisen	scule L	D (DM) (Essentificationalities			
Knuckie right icon	Jue _{KR}	/VRML/FIONIKNUCKIE	R.WTI		
Knuckle right icon translation (X, Y, Z)	trans KR	0	0	0	m
Knuckle left icon	file _{KL}	/VRML/FrontKnucklel	.wrl		
Knuckle left icon translation (X, Y, Z)	trans _{KL}	0	0	0	m
Knuckle icon scale (X, Y, Z)	scale _K	1	1	1	
Enable contact with Upper control arm	contact 11	No			
Enable contact with I ower control arm	contact .	Yes			
	contact L	Ne			
	contact K				
Automatically set joint sumees and damping	uutosiyj	SpecilySui			
	stiffRad 1	9000000			N/m
Radial Bushing Stiffness for P ₂	stiffRad 2	9000000			N/m
Radial Bushing Stiffness for P ₃	stiffRad 3	9000000			N/m
Radial Bushing Stiffness for P ₄	stiffRad 4	90000000			N/m
Radial Bushing Stiffness for P ₅	stiffRad 5	90000000			N/m
Radial Bushing Stiffness for Ps	stiffRad .	9000000	l		N/m
Radial Bushing Damping for P.	dampRad	0000000			N/(m/eac)
Padial Rushing Demping for C	dampRaa 1	90000			w(ii#sec)
Radial Bushing Damping for P2	dampRad 2	90000			N/(m/sec)
Radial Bushing Damping for P ₃	dampRad 3	90000			N/(m/sec)
Radial Bushing Damping for P ₄	$dampRad_4$	90000			N/(m/sec)
Radial Bushing Damping for P ₅	dampRad 5	90000			N/(m/sec)
Radial Bushing Damping for P6	dampRad 6	90000			N/(m/sec)
Axial Bushing Stiffness for P1	stiffAxial.	25000000			N/m
Axial Bushing Stiffness for P-	stiffAvial	25030000			N/m
	sujjAxidi 2	25000000	<u> </u>		is/m
	stiffAxial 3	25000000	I		N/m
Axial Bushing Stiffness for P ₄	stiffAxial 4	2500000	I		N/m
Axial Bushing Stiffness for P₅	stiffAxial 5	2500000			N/m
Axial Bushing Stiffness for P ₆	stiffAxial 6	25000000			N/m
Axial Bushing Damping for P1	dampAxial 1	25000			N/(m/sec)
Axial Bushing Damping for P ₂	damnAvial.	25000	1		N/(m/sec)
Axial Bushing Damping for P.	dampAxial 2	25000			N/(m/acc)
	aampAxial 3	25000			rw/(m/sec)
Axial Bushing Damping for P4	aampAxial 4	25000			N/(m/sec)
Axial Bushing Damping for P ₅	$dampAxial_5$	25000			N/(m/sec)
Axial Bushing Damping for P ₆	dampAxial 6	25000			N/(m/sec)
Joint Length for P1	le 1	0.04			m
Joint Length for P ₂	lea	0.04			m
Joint Length for Pa	le	0.04			m
Islast Learning for D	<i>le</i> 3	0.04			10
Joint Length for P4	le 4	0.04			m
Joint Length for P₅	le 5	0.25			m
Joint Length for P ₆	le 6	0.25	-	-	m

Rear Suspension System

SuspDWB2	Comment:	Rear suspension syste	m									
Parameter Description	Symbol	Value1	Value2	Value3	Units							
Hard points reference frame origin	origin	Axle Center										
Upper control arm inner front point $P_1(X, Y, Z)$	<i>p</i> ₁	0.17492	0.29578	0.2872	m							
Upper control arm inner rear point $P_2(X, Y, Z)$	<i>p</i> ₂	-0.13808	0.29578	0.2872	m							-
Lower control arm inner front point $P_3(X, Y, Z)$	<i>p</i> ₃	0.30332	0.22033	-0.06878	m				Ds			
Lower control arm inner rear point $P_4(X, Y, Z)$	<i>p</i> 4	-0.28089	0.21821	-0.10276	m				ſ	ne		
Upper knuckle outer point P ₅ (X, Y, Z)	<i>p</i> 5	0.00689	0.77536	0.24432	m							
Lower knuckle outer point P ₆ (X, Y, Z)	<i>p</i> 6	-0.00647	0.86112	-0.1625	m	1		p_1	E.			
Lower suspension strut lower point $P_7(X, Y, Z)$	<i>P</i> 7	-0.11853	0.64782	-0.09971	m				18			
Upper suspension strut upper point $P_{8}(X, Y, Z)$	n o	-0 11853	0 49154	0 57484	m			<i>p</i> .	9 3	T		
Lower Suspension Strut Pr is connected to:	strutConn	Lower control arm				Ragala		-	n			
Strut Data	strut	Spring2						<i>P</i> ₃ •	PI	p_6		
Mass of upper control arm	mU	8.49			kg				~			
Mass of lower control arm	mı	31.55			ka			1	940			
Mass of knuckle	m v	58 44			ka							
Mass of strut lower part	mer	15			ka				7			
Mass of struct upper part	m 3L	16			ka	- /			2▲			
	in su	10	0.0	0.0	ka m ²			00	614	00	9 N N	-
Moment of inertia of upper control arm	10	0.3	0.3	0.3	ka m ²	-		0	D	nive		_
Moment of inertia of lower control arm	1	1	1	1	kg.m			50	SI	haft 0		
Moment of inertia of knuckle	i _K	1	1	1	кg.m- 2							
Moment of strut lower part	i _{SL}	0.03	0.6	0.6	kg.m*	Origin point at	the center of the a	ixle.	E.			
Moment of strut upper part	i _{SU}	0.03	0.6	0.6	kg.m²	X-axis is along	the length of the	vehicle and poir	ting to the front o	f the vehicle.		
Upper right control arm icon	file _{UR}	/VRML/BackUCAR.w	rl									
Upper right control arm icon translation (X, Y, Z)	trans UR	0	0	0	m		in the second se					
Upper left control arm icon	file _{UL}	/VRML/BackUCAL.wr	1					00	Shaft	00	1	
Upper left control arm icon translation (X, Y, Z)	trans UL	0	0	0	m			0				
Upper control arm icon scale (X, Y, Z)	scale 11	1	1	1	1			50	Z	00	-	1
Lower right control arm icon	file	/VRML/BackLCAR w	1									4
Lower right control arm icon translation (X, Y, Z)	trans	0		0	m	Origin point is a	on the ground bel	ow the center of	the axie	→ Y		
Lower left control arm icon	file	/V/RML/BackLCAL wr				X-axis is along	the length of the	vehicle and poin	ting to the front of	f the vehicle.		
Lower left control arm icon translation (X, X, Z)	Jue	V RIVIE/ BackECAL.WI										
Lower control arm icon cools (X, Y, Z)	trans LL	0	0	0	m							
	scale L	1	1	1								
Knuckle right icon	file _{KR}	/VRML/BackKnucklel	R.wrl								_	
Knuckle right icon translation (X, Y, Z)	trans _{KR}	0	0	0	m							
Knuckle left icon	file _{KL}	/VRML/BackKnucklel	.wrl									
Knuckle left icon translation (X, Y, Z)	trans KL	0	0	0	m							
Knuckle icon scale (X, Y, Z)	scale _K	1	1	1								
Enable contact with Upper control arm	contact U	No										
Enable contact with Lower control arm	contact L	Yes										
Enable contact with Knuckle	contact K	No										
Automatically set joint stiffnees and damping	autoStiff	SpecifyStiff										
Radial Bushing Stiffness for P1	stiffRad 1	9000000			N/m							
Radial Bushing Stiffness for P ₂	stiffRad 2	9000000			N/m							
Radial Bushing Stiffness for P ₃	stiffRad 3	9000000			N/m							
Radial Bushing Stiffness for P ₄	stiffRad A	9000000			N/m							
Radial Bushing Stiffness for P ₅	stiffRad <	9000000			N/m							
Radial Bushing Stiffness for P ₆	stiffRad (9000000			N/m							
Radial Bushing Damping for P.	dampRad	000000			N/(m/sec)	+++++++++++++++++++++++++++++++++++++++						
Radial Bushing Damping for Pa	dampRad	00000			N/(m/ooo)							
Padial Buching Damping for Pa	dampRad	00000			N/(m/ooo)							
Radial Bushing Damping for P	damp Dad	90000			N/(m/==-)	+++++++++++++++++++++++++++++++++++++++						
	dampRaa 4	90000			N/(III/SEC)						_	
Padial Bushing Damping for Ps	aumpkaa 5	90000			w(III/SEC)						_	
Avial Dushing Damping for P6	aampKad 6	90000			w/(m/sec)						_	
Axial busning Stiffness for P1	stiffAxial 1	25000000			N/m							
Axiai Bushing Stiffness for P2	stiffAxial 2	25000000			N/m							
Axial Bushing Stiffness for P ₃	stiffAxial 3	2500000			N/m							
Axial Bushing Stiffness for P ₄	stiffAxial 4	2500000			N/m							
Axial Bushing Stiffness for P ₅	stiffAxial 5	2500000			N/m							
Axial Bushing Stiffness for P ₆	stiffAxial ₆	25000000			N/m							
Axial Bushing Damping for P1	$dampAxial_1$	25000			N/(m/sec)							
Axial Bushing Damping for P2	dampAxial 2	25000			N/(m/sec)							
Axial Bushing Damping for P ₃	dampAxial 3	25000			N/(m/sec)							
Axial Bushing Damping for P ₄	dampAxial A	25000			N/(m/sec)							
Axial Bushing Damping for Ps	dampAxial.	25000			N/(m/sec)						-	
Axial Bushing Damping for P.	damn Avial	25000			N/(m/eec)	+++++++++++++++++++++++++++++++++++++++						
Joint Length for P4	le	2000			. #(II#SEC)						-	
loint Length for P.	le 1	0.04				++++++					_	
loint Longth for P	le 2	0.04			n						_	
Some Length for P3	le 3	0.04			m							
Joint Length for P4	le 4	0.04			m							
Joint Length for P ₅	le 5	0.25			m							
Joint Length for P ₆	le ₆	0.25		L	m							

Antiroll bar

iRollBar1	Comment:				
Parameter Description	Symbol	Value1	Value2	Value3	Units
Enabled	enabled	Yes			
Hard points reference frame origin	origin	Axle Center			
Center link (tie rod inner) point p1	<i>p</i> ₁	0.227144	0.584429	-0.16569	m
Steering knuckle (tie rod outer) point p ₂	<i>p</i> ₂	0.227145	0.584429	0.004793	m
Pitman arm rearward point p ₃	<i>p</i> 3	0.493326	0.265005	-0.00878	m
Connection	endLinkConn	LowerArm			
Anti Roll Bar mass	m Bar	15	5		Kg
Pitman arm inertia	i Bar	0.1	3	3	Kg.m ²
End link mass	m Link	2.62			Kg
Idler arm inertia	i _{Link}	0.001	0.0262	0.0262	Kg.m ²
Anti Roll Bar torsional stiffness	barStiff	8900)		N.m/rad
Anti Roll Bar torsional damping	barDamp	20			N.(m/s)/rad

Front Strut

Spring1	Comment:	Front Strut		
Force-Deflection	n (Stiffness)	Force-Veloci	ty (Damping)	40000 Strut Stiffness
Deflection (m)	Force (N)	Velocity (m/s)	Force (N)	20000
-0.11	-90000) -4	-50000	
-0.085	-31373.71297	-0.33	-10500	
-0.08	-30013.7711	-0.13	-6500	$\mathbf{z}^{0.13}$ -0.1 -0.03 -0.1 -0.13
-0.075	-28706.977	7 (0 0	a
-0.07	-27451.70415	0.13	8 8000	
-0.065	-26246.32604	0.33	3 11500	ି -60000
-0.06	-25089.21617	7	4 60000	
-0.055	-23978.74802	2		
-0.05	-22913.29509	9		- Deflection (m)
-0.045	-21891.23086	5		80000
-0.04	-20910.92883	3		Strut Damping
-0.035	-19970.76248	3		60000
-0.03	-19069.10531			40000
-0.025	-18204.3308	3		
-0.02	-17374.81245	5		
-0.015	-16578.92375	5		
-0.01	-15815.03819)		
-0.005	-15081.52925	5		<u> </u>
0	-14376.77044	1		-40000
0.005	-13699.13523	3		
0.01	-13046.99712	2		_ Velocity (m/s)
0.015	-12418.7296	5		
0.02	-11812.70616	5		Strut Friction
0.025	-11227.3003	3		
0.03	-10660.88549	9		
0.035	-10111.83524	1		
0.04	-9578.523025	5		
0.045	-9059.322345			
0.05	-8552.606687	/		
0.055	-8056.749543	3		
0.06	-7570.124403	5		ב
0.065	-7091.104757	/		
0.07	-6618.064095			-30 -20 -10 Velocity (m/s)10 20 30
0.075	-6149.375908	5		
0.08	-5683.413686			
0.085	-5218.550921			
0.09	-4753.161101			
0.11	30000)		

Rear Strut																
Spring2	Comment:	Rear stru	Rear strut													
Force-Deflection	n (Stiffness)	Force	Force-Velocity (Damping)									4000	Put S	liffnes	45	
Deflection (m)	Force (N)	Veloc	ity (m/s)	Force (N)	Π							2000		ĺ		
-0.165	-90000		-4	-50000								2000				
-0.14	-43240.6618		-0.33	-10500									0	_		
-0.135	-41485.95618		-0.13	-6500		⊋ ⁻⁰).2	-0.	15	-0.1	-0.0	5 2000		0.	.05	0.1
-0.13	-39809.62254		0	0	1	5						2000				
-0.125	-38208.80005		0.13	8000		ខូ						4000	10 +			
-0.12	-36680.62786		0.33	11500		ē						6000	0-			
-0.115	-35222.24512		4	60000				/				0000				
-0.11	-33830.791											8000				
-0.105	-32503.40465											0000)0 J			
-0.1	-31237.22523				Π_						Deflecti	on	(m)	1	1	
-0.095	-30029.39189					ľ					30000 -	St	rut Da	niam	þ	
-0.09	-28877.04379					-				(50000				*	
-0.085	-27777.3201															
-0.08	-26727.35995					-					+0000 +					
-0.075	-25724.30253					?					20000					
-0.07	-24765.28697															
-0.065	-23847.45243					ຍັ [3	4		0			5		1	
-0.06	-22967.93808					<u>פ</u> ר	,				20000				T	
-0.055	-22123.88307										10000					
-0.05	-21312.42656									-	+0000					
-0.045	-20530.7077					L							(a)		I	
-0.04	-19775.86565								1		velocit	/ (m	15)			
-0.035	-19045.03957										1	S	trut F	rictio	n	
-0.03	-18335.36861															
-0.025	-17643.99194					eut					0.8					
-0.02	-16968.0487					Ö										
-0.015	-16304.67806				L *	ēff					-0.6					
-0.01	-15651.01917					ပိ										
-0.005	-15004.21119					ç					0.4					
0	-14361.39328				:	ŝ					0.2					
0.005	-13719.70459					i					0.2					
0.01	-13076.28428					ш.										
0.015	-12428.27151						 20		n	_10	Velocit	v (m	າ/ຣ)i∩		20	30
0.02	-11772.80543					-、		-2		-10		, (11			20	50
0.025	-11107.0252															
0.03	-10428.06998															
0.035	-9733.078923															
0.045	30000															

REFERENCES

- 1. Wasfy, T., *Thrust Area 3: DIS/GroundVehicle: Complex Terramechanics Prototype*, in *AVT-248 Next-Generation NATO Reference Mobility Model (NRMM) Development*, J. Dasch and P. Jayakumar, Editors. 2019, North Atlantic Treaty Organiation (NATO) Research and Technology Organiation.
- 2. Wasfy, T.M., P. Jayakumar, D. Mechergui, and S. Sanikommu, *Prediciton of Vehicle Mobility on Large* -*Scale Soft-Soil Terrain Maps using Physics-Based Simulation*. To appear in the International Journal of Vehicle Performance, 2017.
- 3. Wasfy, T.M., Wasfy, H.M. and Peters, J.M., *High-Fidelity Multibody Dynamics Vehicle Model Coupled* with a Cohesive Soil Discrete Element Model for predicting Vehicle Mobility, in 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. 2015, ASME: Boston, MA.
- 4. Wasfy, T.M., *Asperity spring friction model with application to belt-drives*, in 19th Biennial Conference on Mechanical Vibration and Noise. 2003, ASME International: Chicago, IL.
- 5. Wasfy, T.M., Yildiz, C., Wasfy, H.M., and Peters, J.M., *Effect of Flat Belt Thickness on Steady-State Belt Stresses and Slip.* ASME Journal of Computational and Nonlinear Dynamics, 2016. **11**(5).
- 6. Wasfy, T.M.a.L., M.J., Modeling the dynamic frictional contact of tires using an explicit finite element code, in 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. 2005, ASME: Long Beach, CA.
- 7. Leamy, M.J., Wasfy, T.M., *Transient and steady-state dynamic finite element modeling of belt-drives*. ASME Journal of Dynamics Systems, Measurement, and Control, 2002. **124**(4): p. 575-581.
- 8. Wasfy, T.M. and J. O'Kins, Finite Element Modeling of the Dynamic Response of Tracked Vehicles, in International Design Engineering Technical Conferences, 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. 2009, ASME: San Diego, CA.
- 9. Yildiz, C. and T.M. Wasfy, *Time-accurate multibody dynamics model for toroidal traction drives*, in 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2011), 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. 2011, ASME: Washington, DC.
- 10. Wasfy, T.M., P. Jayakumar, D. Mechergui, and S. Sanikommu, *Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation*, in *GVSETS 2016, 2016 NDIA Ground Vehicle Systems Engineering and Technology Symposium, Modeling & Simulation, Testing and Validation (MSTV) Technical Session*. 2016: Novi, MI.